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Abstract

Background: Epigenetic modifications of the fragile X mental retardation 1 (FMR1) gene locus may impact the risk
for reproductive and neurological disorders associated with expanded trinucleotide repeats and methylation status in
the 5′ untranslated region. FMR1 methylation is commonly assessed by Southern blot (SB) analysis, yet this method
suffers a cumbersome workflow and relatively poor sizing resolution especially for premutation allele characteristic for
fragile X-associated disorders. In this study, a methylation PCR (mPCR) assay was used to evaluate correlations among
genotype, epitype, and phenotype in fragile X premutation (PM) carrier women in order to advance the understanding
of the association between molecular determinants and the presence of fragile X-associated tremor and ataxia (FXTAS).

Results: Activation ratios (ARs) in 39 PM women were determined by mPCR and compared with SB analysis. ARs were
distributed across a range of values including five samples with <20% AR and six with >80% AR. The two methods
were correlated (R2 of 0.87 and F test of <0.001), indicating that mPCR can measure AR in agreement with established
assays. However, mPCR was unique in identifying novel and distinct patterns of methylation mosaicism in premutation
carrier women, including seven sibling pairs that were assessed using FXTAS clinical rating scales. Of note, four of six
pairs with defined age of onset for neurological signs showed ARs consistent with skewed activation of the pathogenic
expanded allele. One subject with severe FXTAS had a mosaic full mutation allele identified using mPCR but not detected
by SB analysis.

Conclusions: We utilized a repeatable and streamlined methodology to characterize FMR1 inactivation in premutation
carrier women. The method was concordant with SB analysis and provided higher resolution information on allele
and methylation mosaicism. This approach can facilitate the characterization of epigenetic factors influencing fragile X
phenotypes in larger cohort studies that can advance understanding and treatment of fragile X-associated disorders.
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Introduction
The expansion of trinucleotide cytosine-guanine-guanine
(CGG) repeats and methylation status of the fragile X
mental retardation 1 (FMR1) gene are implicated in a
number of developmental, neurodegenerative, and repro-
ductive disorders. Expansions exceeding 200 CGG repeats
are associated with hypermethylation of the promoter
region, transcriptional silencing of the gene, and reduction
or absence of expression of the FMR1 protein (FMRP),
which result in fragile X syndrome (FXS). FXS, which
affects about 1 in 4000 males and 1 in 8000 females, is the
most common inherited cause of intellectual disability
and the most common single-gene defect linked to autism
spectrum disorders [1, 2]. FMR1 alleles with 55–200
repeats are categorized as premutations (PM) and have a
prevalence of 1/151 to 1/209 women and 1/430 to 1/468
men [3, 4]. Clinical disorders associated with PM alleles
include fragile X-associated tremor/ataxia syndrome
(FXTAS) [5] and fragile X-associated primary ovarian
insufficiency (FXPOI) [6]. While fewer than 45 CGG
repeats is considered a “normal” allele, a conservative
expansion of the repeat region to 45–54 CGG repeats is
designated as intermediate or gray zone, although some
groups define the gray zone as 41–54 repeats [7]. Inter-
mediate alleles have been associated with the Parkinson
disease and other disorders [8]. The risks for these disor-
ders and the potential severity of relevant phenotypes are
typically more pronounced in males because of a single X
chromosome. However, in females, epigenetic influences
such as X-chromosome inactivation (XCI), may impact
the risks, age of onset, and severity of FXS, FXTAS, or
FXPOI, as for other X-chromosome disorders [9].
PM carrier females may have a greater risk for presenting

with fragile X-associated phenotypes if the normal allele is
preferentially methylated (inactive). Reports in the literature
describe a relationship between the FMR1 PM and XCI in
sibling pairs with discordant phenotypes [10, 11]. A report
by Johnston-MacAnanny et al. found no evidence for a role
of XCI in a case of monozygotic twin sisters with a FMR1
PM but a different phenotype for FXPOI [10]. In contrast,
Bodega et al. present evidence for a direct correlation be-
tween the activation status of the PM FMR1 allele and
FXPOI manifestations from an assessment of three sibling
pairs with similar FMR1 expansions, but discordance for
the FXPOI phenotype [11]. Several studies have suggested
an association of XCI with symptoms in sisters with neuro-
logical signs or FXTAS [12, 13], but these results represent
individual families and it is not clear if the findings can be
generalized.
Discrepancies in the role or contribution of XCI in

PM carrier phenotypes may be explained in part by the
small size of the cohorts, degree of mosaicism, and the
technical variability and limitations of the methodologies
used. These studies have typically used Southern blot

(SB) analysis to query the methylation status of the
FMR1 gene or XCI analysis using the human androgen
receptor (HUMARA) gene. SB analysis uses restriction
digestion to interrogate the relative allele size and pro-
portional methylation of both X chromosomes at the
FMR1 locus. This method can inform relative activation
between normal and premutation alleles but is low
throughput and labor intensive. Moreover, SB analysis
has low sizing resolution and detection sensitivity for
shorter alleles compared to methylation PCR (mPCR)
[14]. Comparatively, XCI analysis using the HUMARA
gene relies on methylation-sensitive restriction digestion
(e.g., HpaII), PCR, and capillary electrophoresis to differ-
entiate X chromosomes polymorphic for a variable CAG
repeat region (9 to 36 CAG repeats). Separation of
alleles heterozygous for the number of repeats and quan-
tification of relative peak heights provides a reference for
XCI. This approach offers higher throughput and repro-
ducible analysis of XCI than SB. However, as Amos-
Landgraf et al. reported, approximately 20% of women
may have confounded interpretation in cases of homozy-
gosity or poorly resolved CAG repeat alleles [15]. More-
over, activation ratios derived from a distinct gene
region are only surrogates for the activation status of the
FMR1 gene. In this study, we sought to establish more
accurate and higher throughput methods for obtaining
methylation status of the FMR1 locus to examine the re-
lationship with fragile X-associated phenotypes.
mPCR quantifies allele-specific methylation at the

FMR1 locus [14, 16] with a simplified workflow relative
to SB analysis. The method is based on methylation-
specific digestion using HpaII and comparison to a
control-digested aliquot of the same DNA using PCR
and capillary electrophoresis for simultaneous determin-
ation of repeat length and methylation status. Prior work
[14, 16] established concordance for methylation status
in a range of genotypes and full-mutation alleles in cell
lines and clinical samples. In this study, we extend the
use of mPCR to the assessment of FMR1 activation
ratios (AR) in female PM carriers to evaluate potential
correlation with and improvements over SB analysis. AR
analysis using mPCR was also applied to a preliminary
cohort of sibling pairs with concomitant FXTAS rating
scale data. mPCR represents a fundamental improve-
ment in the analysis of activation ratios at the FMR1
locus compared to current methods and provides
additional information in the study and characterization
of fragile X PM disorders.

Materials and methods
Clinical genomic DNA samples
Genomic DNA samples from female PM carriers were
analyzed in this study. Informed consent from all partici-
pants was obtained under an Institutional Review Board

Hadd et al. Clinical Epigenetics  (2016) 8:130 Page 2 of 9



approved procedures at Rush University Medical Center
(RUMC). The DNA was isolated from peripheral blood,
stored at −20 °C, and shipped anonymized to Asuragen,
Inc., for analysis. The cohort included samples from
seven sibling pairs that had been assessed for FXTAS as
part of a larger study to determine the neurological and
endocrine phenotype of PM carrier women. Examina-
tions from all women were scored using the FXTAS
Rating Scale (FXTAS-RS), to evaluate the motor signs of
FXTAS, and women were evaluated using diagnostic
criteria for FXTAS [17].

Methylation analysis
The AR of the normal FMR1 allele was determined with
AmplideX® FMR1 mPCR reagents (Asuragen, Inc.)
following manufacturer-recommended protocols and
previously published methods [14, 16]. Briefly, genomic
DNA was premixed with a reference control plasmid
DNA, used to assess amplification efficiency, and diges-
tion control plasmid DNA, used to determine digestion
efficiency. This mixture was divided into two restriction
enzyme reactions: (1) a methylation-sensitive restriction
digestion and (2) a control digestion reaction. Products
of the methylation-specific reaction were amplified using
HEX-labeled PCR primers, and the products from the
control digestion were amplified with FAM-labeled
primers. PCR products from these separate reactions
were pooled and analyzed using capillary electrophoresis
(3500xL Genetic Analyzer, Thermo Fisher Scientific) for
coincident determination of repeat length in the FAM
channel and methylation status in the HEX channel.
Repeat lengths were determined by correcting the size
and mobility profile of CGG repeat DNA relative to the

size ladder as previously described [16]. The percent
methylation (%Me) for each peaki was calculated as the
ratio of peak heights normalized to the peak height of
the reference control according to Eq. 1:

%Mei ¼ Peaki;HEX

RefHEX

� �
=

Peaki;FAM
RefFAM

� �
� 100% ð1Þ

where Peaki, HEX is the signal height in the HEX channel
corresponding the methylated fraction of Peaki,FAM from
the control digestion reaction and REFHEX and REFFAM
to the peak heights of the PCR reference peak in the
HEX and FAM channels, respectively. A schematic of
the workflow and digestion sites of HpaII relative to EagI
and NruI along with the representative two-color output
of mPCR is shown in Fig. 1.
Repeatability of methylation determination was assessed

using a pooled cell line control (Fragile X Process Control,
Asuragen, Inc.) comprised of alleles representing a range
of repeat lengths and methylation states. The repeat
lengths (and expected methylation) of the alleles in
this control were 18 (<10%), 30 (60 ± 10%), 32 (<10%),
56 (40 ± 10%), 85 (<10%), 116 (90 ± 10%), and >200
CGG (<10%). Results from 16 repeat measurements
over three different days using two operators and in-
strument platforms were consistent with expected
values (Additional file 1: Table S1).

Calculation of the fragile X AR
The AR was determined using the percent methylation
on the normal allele amplicon peak according to Eq. 2:
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Fig. 1 mPCR uses HpaII restriction digestion, two-color PCR and CE for determination of size and methylation. a Schematic diagram of restriction sites in
the 5’ UTR of the FMR1 gene. The HpaII sites flank the CGG repeat region. Arrows indicate location of the forward (mPCR Fwd) and reverse (mPCR Rev)
PCR primers. b mPCR assay workflow. Percent methylation can be calculated from the normalized ratio of peak heights in the HEX and FAM channels
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ARnormal allele ¼ 1−%Menormal allele ð2Þ
Calculations for AR were made using the normal allele

peak height to match results from SB analysis and to ac-
count for the broader distribution of peaks and methyla-
tion mosaicism observed in the PM allele.

SB analysis
SB analysis of FMR1 was performed at RUMC according
to standard methods [18]. Genomic DNA samples were
digested with EcoR I and Eag I (methylation-sensitive
restriction enzymes), and blots were probed with [32P]-
labeled StB12.3. Fragile X ARs for the PM allele were
quantified by densitometric scanning of bands corre-
sponding to unmethylated (active) DNA on the SB. ARs
for the normal allele were calculated as the signal from
the unmethylated portion of the normal band divided by
total signal in the unmethylated portion of both the PM
containing and normal bands.

Results
mPCR analysis provided similar and higher resolution
information compared to SB analysis
We first examined the qualitative and quantitative
differences between mPCR and SB analysis for premuta-
tion alleles. The distinctive features of an mPCR

electropherogram for two samples plus their correspond-
ing SB images are shown in Fig. 2. The full trace is shown
in panel A, a highlight of the premutation allele amplicons
is shown in panel B, and the SB images, with control
bands, are shown in panel C. The electropherograms of
signal versus size in base pairs for the allele amplicons
from the control restriction digestion (FAM-labeled
primers, blue) and from the methylation-sensitive restric-
tion digestion (HEX-labeled primers, green) are shown.
Residual signal in the HEX channel corresponds to the
methylated fraction. These traces include the digestion
control (expected to be <10% methylated) and the PCR
reference control with signals in both FAM and HEX to
be similar. The premutation allele amplicons were de-
tected as a distribution of size and methylation mosaicism.
Generally, and more prominently shown in sample R35
(Fig. 2), the premutation allele amplicons were fully meth-
ylated in the shorter or leading allele amplicons and
unmethylated in the longer or trailing allele amplicons. In
SB, partial methylation status was determined as the rela-
tive density of separately zoned bands detected within the
unmethylated (<5.2 kb) region of the gel. These bands were
unresolved in the methylated region (>5.2 kb) of the gel.
The two samples, highlighted in Fig. 2, provided a

good example of different activation ratios and premuta-
tion allele resolution. The normal allele in sample R34
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Fig. 2 mPCR reveals ARs that correspond with SB results and distinct methylation patterns. a Full electropherogram profile for two representative
samples (R34 and R35) showing amplicon peaks for the digestion control (Dig Ctrl), PCR control (PCR Ctrl) and normal and PM alleles. b An
enlarged image of the PM region denotes distribution of sizes and methylation patterns. CGG repeat lengths were derived from the FAM channel
(blue trace) and percent methylation from the HEX channel (green trace) with allele ratio shown for the normal peak. c) SB analysis of the same
samples highlights similarity of allele ratio calculations for the normal allele with lower resolution compared to mPCR. The normal control is a
female homozygous 30/30 CGG allele with partial methylation
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was preferentially unmethylated with an AR of 81%
compared to sample R35, which had a more methylated
normal allele and correspondingly lower activation ratio
of 30%. These results were proportional to the relative
density of the normal allele bands in the Southern blot
image albeit with less resolution between the normal
and premutation bands in the methylated zone of the
gel. The majority of the premutation peak for R34 was
expected to be methylated as indicated by the normal
allele AR. While there was evidence of size and methyla-
tion mosaicism for the premutation allele, the majority
of the allele amplicon peak area was detected in both
the FAM and HEX channels corresponding to higher
methylation for this allele (Fig. 2, panel B). For sample
R35, the premutation peak profile was more distributed
between methylated and unmethylated peaks. This
sample had a lower AR with expected lower methylation
in the premutation allele. This information was not evi-
dent using lower resolution SB analysis wherein subtle
distributions of unmethylated and methylated compo-
nents of the premutation allele are detected in separate
regions of the gel. Because of the lower resolution in SB
and the more distributed peak profile of the premutation
allele using mPCR, activation ratios were calculated
from the normal allele to make further comparisons
between sample sets.

Activation ratios determined using mPCR and SB were
highly concordant
We next evaluated the ability of mPCR to determine
ARs on a broader cohort representing distinctive ranges
of low, partial, and high activation ratios. A summary of
the sample cohort, CGG repeat lengths, and activation
ratios between methods is provided in Additional file
(Additional file 1: Table S2). Normal alleles ranged from
20 to 41 CGG repeats with an average of 29 CGG.
Primary PM allele repeat lengths ranged from 58 to 120
CGG and included samples with mosaicism in the
higher PM and low FM range. Normal allele ARs were
distributed across a range of values including five sam-
ples with <20% AR and six with >80% AR.
ARs for the normal allele were compared between

methods and plotted as percent activation (Fig. 3). Even
with reporting differences of 1% increments for mPCR
and 10% increments for SB analysis, the data were well
correlated (R2 of 0.87 and F test of <0.001) and sup-
ported a high level of agreement between both methods.
Notably, unmethylated alleles with less than 20% methy-
lation by SB analysis tended to report in higher ranges
using mPCR. For example, two samples with 10%
methylation by SB were 22 and 28% by mPCR. Another
sample with 5% methylation by SB, confirmed on
repeated blots, was detected at 46% by mPCR, a consist-
ent result obtained on repeated measurements at both

sites. The discordant result for this sample may be
attributed to differences in restriction sites (as shown in
Fig. 1) or to the lower resolution of SB for mostly
unmethylated normal alleles (e.g., Fig. 2, panel C).

mPCR reveals distinctive premutation allele patterns in
sibling pairs
Due to the high concordance between mPCR and SB
analysis, we considered if the additional information
available using mPCR could be potentially linked to
FXTAS phenotypes in sibling pairs. Results from the SB,
mPCR, and FXTAS rating scale for the seven sibling
pairs are listed in Table 1. Distributions of amplicon
peak patterns and levels of methylation mosaicism could
vary significantly between sisters (Fig. 4). In an extreme
case, one sister, R27, had a minor mosaic full-mutation
allele that was not detected by SB analysis (pair 1). In
other cases, the proportion of active, unmethylated PM
peaks was distinct between siblings (pairs 4 and 5). This
level of methylation mosaicism may indicate relative
activity of the PM allele or other features linked to
phenotype. One sibling pair without neurological signs,
pair 7, is included as a case control. A typical male pre-
mutation allele which lacks methylation, as expected, is
included for reference.
With regard to the association of these epigenetic

patterns to FXTAS, the results were more varied, lacking
direct association. In four of the seven sister pairs (pairs
2–5), the age of onset of neurological signs was earlier
in the sister with the lower AR of the normal allele
(Table 1). In the first of the three exceptions (pair 1), the
CGG repeat size was higher in the sister with earlier age
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Fig. 3 Normal allele ARs are highly concordant between mPCR and
SB analysis. The ARs of 39 samples were assessed by mPCR and SB.
The SB results are grouped in 10% increments compared to 1%
increments using mPCR. ARs were detected across the range of
mostly methylated (AR<20%> and mostly unmethylated (AR>80%)
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of onset and the ARs between the two were similar. In
pair 6, age of onset was very close despite varying AR.
Pair 7 is not yet affected, but the sisters were younger
than 40. Many of the women did not have available neu-
roimaging, which was not required or collected in the
study, and a more definitive diagnosis of FXTAS could
not be made. Even though the sample size in this cohort
was too small to determine whether there was an associ-
ation between FXTAS and AR, the use of mPCR pro-
vided ARs, CGG repeat length, and additional layers of
information consistent with the goals of understanding
links between genotype and phenotype.

Discussion
The ability to characterize epigenetic influences on
FMR1 gene expression can help improve understand-
ing of risk, severity, and potential treatments for fra-
gile X-associated disorders. In this study, we describe
a simple yet powerful method for obtaining methyla-
tion status of the FMR1 promoter region and com-
pared results to SB analysis across a cohort of female
PM carriers that included a FXTAS subgroup. Our
findings demonstrate that mPCR is a reproducible,

quantitative, and accurate method for the assessment
of individual alleles and that the method can assess
the activation status of the X chromosome. mPCR
assay results strongly correlated with independent SB
analyses and offered a number of advantages over this
standard method, including a more streamlined work-
flow, higher resolution to detect similarly sized
alleles, and a more refined quantification of the AR
in PM alleles. The workflow for mPCR takes a total
of ~8 h and 4 steps compared to an ~68 h turn-
around time and multiple steps associated with SB
analysis [19]. This approach could be used to support
larger studies and assessment of novel epigenetic
features that influence important phenotypes linked
to the FMR1 gene.
The use of mPCR revealed unusual methylation

mosaic patterns in the expanded allele of PM carriers.
Female PM alleles were generally characterized with a
leading peak profile of predominantly methylated peaks
and a trailing peak profile of predominantly unmethy-
lated alleles [14]. The differential size and relative abun-
dance of these peak patterns varied between carriers
with equally sized PM alleles and between sibling pairs

Table 1 Sibling pairs and neurological phenotypes associated with repeat length and activation ratio

Pair Neurological phenotype Onset of
neurological
signs

CGG repeats Activation
ratio (SB)

Activation
ratio (mPCR)

FXTAS motor
rating scale

Neuro-imaging FXTAS

1 Kinetic tremor, gait
ataxia, parkinsonism

70 20/75, 79 20% 34% 20 Hyperintensities in white
matter, midline pons

Definite FXTAS

Mild gait ataxia 60 23/118, 139, >200 50% 39% 7 Hyperintensities (mild) in
white matter

Possible FXTAS

2 Kinetic tremor, gait
ataxia, parkinsonism

75 25/68, 80, 86 20% 29% 44 Hyperintensities in deep
white matter, brainstem,
cerebellum

Definite FXTAS

Kinetic tremor, gait
ataxia, parkinsonism

90 25/90, 99 90% 79% 74 N/A Probable FXTAS

3 Numbness, dystonia
of feet

51 27/66, 68 20% 16% 1 N/A No

Numbness of feet 61 27/58, 69, 71 50% 45% 4 N/A No

4 Mild kinetic tremor, falls 72 30/72, 74 10% 27% 15 Hyperintensities (mild) in
white matter

Possible FXTAS

Mild kinetic tremor 79 30/79, 82 40% 35% 7 N/A No

5 Mild kinetic tremor, mild
gait ataxia

60 20/91, 95 80% 81% 12 N/A Probable FXTAS

Kinetic tremor, falls,
dystonia

54 30/102, 110 20% 30% 7 N/A No

6 Kinetic tremor, gait
ataxia, parkinsonism

78 29/77, 80 80% 81% 14 N/A Probable FXTAS

Kinetic tremor, gait
ataxia, parkinsonism

83 32/76, 78 40% 29% 13 N/A Probable FXTAS

7 None N/A 30, 94, 100 90% 82% 2 N/A No

None N/A 30, 94, 100 10% 22% 4 N/A No

Summary of phenotype, age of onset of neurological signs and results linking genotype, activation ratio by Southern blot (SB) and mPCR analysis and rating
information for fragile X tremor and ataxia syndrome (FXTAS) by sibling pair
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(Fig. 4). Males, with PM characterized by an unmethy-
lated single group of peaks (Fig. 4), lack this mosaic
pattern [14, 16]. A similar expanded and biphasic profile
was also identified using a different technique in a
mouse model of fragile X PM alleles [20]. In mice posi-
tive for a mutation in a methylation repair gene, MSH2,

PM alleles had an expanded and biphasic profile. Mice
null for this MSH2 mutation had single distribution
peaks. Results in these mouse models suggest somatic
instability and contributions from other genetic risk
factors involving methylation and transcription repair
genes. mPCR can reveal these mosaic expansion and

Fig. 4 mPCR differentiates methylation mosaicism in PM alleles for sibling pairs. PM amplicon analysis from 7 sibling pairs showing CGG profile in
the FAM (top panels, blue trace) and methylation fraction in the HEX (bottom panels, green trace) channels with allele ratio (AR), age of onset of
neurological signs in years old (yo) and indication of FXTAS status. Methylation profiles showed predominantly methylated shorter amplicons and
unmethylated fraction for longer amplicons. Within profile pairs, the relative ratio of methylated to unmethylated peaks were distinctive. An
unmethylated male reference allele is shown to illustrate the distribution of allele peaks without a methylated fraction. Only premutation allele
sizes as peak maxima are listed, ARs were determined from the percent methylation of the normal allele (not shown)
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methylation patterns that might be indications of
instability and/or risk factors for disease severity.
mPCR provides a complementary approach to recent

advances in DNA sequencing technologies for the as-
sessment of hydroxymethylation [21]. Direct sequencing
provides an informative means to query the epigenetic
status of the gene region without amplification or bias
introduced through pre-treatment of the DNA with
bisulphite. Methylation and hydroxymethylation could
be directly inferred and mapped to specific CpG islands.
In another study, a comprehensive survey of methylation
and hydroxymethylation was used to characterize eight
males with FXS compared to controls [22]. The authors
report reciprocal effects of hydroxymethylation on gene
expression compared to methylation and links to fragile
X phenotype within a small cohort. In both of these
techniques, application to female samples would have
confounding information of epigenetic factors averaged
across both the normal and expanded allele. The use of
mPCR allows differentiation of allele size and status and
identification of potential somatic instability within the
expanded allele.
We applied mPCR within a small cohort of sibling pairs

to determine if FMR1 AR correlated with neurological
signs and FXTAS. The majority of the sisters (4/7) had age
of onset of neurological signs associated with AR. Of the
three exceptions, one pair was likely too young to manifest
FXTAS. Another had similar AR ratios, but different PM
allele sizes. This may suggest that in the majority of sister
pairs, a combination of CGG repeat size and AR could be
a prognostic factor for the age of onset of FXTAS. How-
ever, CGG and AR were not informative for a sibling pair
with milder FXTAS signs. Extending this work to a larger
number of PM carrier women is warranted to determine if
AR, CGG length, or both are associated with phenotype
or prognosis. Additional epigenetic features, such as
hydroxymethylation and factors that influence preferential
mosaicism and activation of the PM allele, should also be
assessed for their utility to increase predictive accuracy.
The ability to associate epigenetic factors and activation
ratios with clinical phenotypes is an important goal in
clinical genetic counseling for women at risk of FXTAS.

Additional file

Additional file 1: Table S1. CGG repeat lengths and methylation
analysis of a pooled positive control including 18, 30, 32, 56, 85, 116 and
>200 CGG. Table S2. Cohort panel distribution of allele sizes and ARs
determined using mPCR compared to the activation ratio from Southern
blot analysis. (PDF 445 kb)
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