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Abstract

The azanucleosides azacitidine and decitabine are currently used for the treatment of acute myeloid leukemia (AML) and
myelodysplastic syndromes (MDS) in patients not only eligible for intensive chemotherapy but are also being explored
in other hematologic and solid cancers. Based on their capacity to interfere with the DNA methylation machinery, these
drugs are also referred to as hypomethylating agents (HMAs). As DNA methylation contributes to epigenetic regulation,
azanucleosides are further considered to be among the first true “epigenetic drugs” that have reached clinical
application. However, intriguing new evidence suggests that DNA hypomethylation is not the only mechanism of
action for these drugs. This review summarizes the experience from more than 10 years of clinical practice with
azanucleosides and discusses their molecular actions, including several not related to DNA methylation. A particular
focus is placed on possible causes of primary and acquired resistances to azanucleoside treatment. We highlight current
limitations for the success and durability of azanucleoside-based therapy and illustrate that a better understanding of the
molecular determinants of drug response holds great potential to overcome resistance.
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Background
Historical view of azanucleosides
Azanucleosides (AZN) are pyrimidine analogues of the nu-
cleoside cytidine that were originally developed as classical
cytostatic agents to be used at higher doses [1]. Nowadays,
these compounds are known to be potent inhibitors of
DNA methylation when used at lower doses and are often
referred to as hypomethylating agents (HMAs) [2]. As such,
AZN are considered the first epigenetic drugs. Azanucleo-
sides currently used in clinic are 5-azacytidine (azacitidine)
and 5-aza-2′-deoxycytidine (decitabine).
AZN were first synthesized in 1964 [1] and clinical tri-

als examining their anticancer activity commenced as
early as 1967 [3]. In 1978, it was shown that AZN are

able to induce terminal differentiation of mouse embryo
cells, which was later associated with changes in DNA
methylation [2, 4]. This was the first link of DNA methy-
lation to cellular differentiation. As patterns of methyla-
tion and chromatin structure are known to be severely
altered in many forms of cancer, often with gene silen-
cing of key tumor suppressor genes as a result of pro-
moter hypermethylation, this important observation
opened an avenue for developing DNA methylation in-
hibitors for cancer treatment. In particular, acute leuke-
mias as well as myelodysplastic syndromes had been
shown to exhibit multiple silenced tumor suppressor
genes, one reason why AZN were tested in these dis-
eases. Importantly, in the initial experiments of Jones
and Taylor [2, 4], optimal inhibition of DNA methylation
and subsequent differentiation of cells was observed at
lower drug concentrations with prolonged exposure,
whereas higher concentrations led to a decrease in de-
methylation and differentiation. The original studies of
decitabine and azacitidine in the 1980s for the treatment
of leukemia employed these drugs at the maximum tol-
erated dose (e.g., 2500 mg/m2 decitabine per course) but
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had to be discontinued due to prolonged myelosuppres-
sion. Subsequently, both drugs were explored at much
lower doses allowing optimal hypomethylation as sug-
gested by Jones and Taylor. This led to the design of the
first successful clinical trial in myelodysplastic syndromes
using low doses of azacitidine (75 mg/m2) administered
over a prolonged period of 7 days repeated every 28 days,
demonstrating superiority over best supportive care [5].
On the basis of these data, azacitidine was approved by
the US Food and Drug Administration (FDA) in 2004 for
the treatment of myelodysplastic syndromes (MDS) and
thus is the first HMA agent approved for treatment of this
disease [6]. Similarly, decitabine was shown to have ac-
tivity in higher-risk MDS at a low-dose schedule of
15 mg/m2 every 8 h for 3 days repeated every 6 weeks
[7]. Decitabine was approved by the FDA for the treat-
ment of MDS using this schedule in 2006. A lower-
dose regimen with higher-dose intensity of 20 mg/m2 over
5 days repeated every 28 days was later suggested as a
superior regimen within a randomized phase III trial [8].

Molecular drug action
AZN are analogues of the naturally occurring pyrimidine
nucleoside cytidine (Fig. 1) and have so far been shown to
have two main mechanisms of antitumor activity: (i) cyto-
toxicity due to incorporation into DNA (and RNA for aza-
citidine) leading to induction of DNA damage response
and (ii) DNA hypomethylation through inhibition of DNA
methyltransferase, enabling restoration of normal growth
and differentiation. Although azacitidine and decitabine
are considered to be mechanistically similar drugs, they

have also been shown to exhibit distinctly different effects
and have shown varied clinical efficacy in clinical trials.
Some of the differences in efficacy may stem from dosing
issues as well as differences in incorporation into RNA
and DNA as delineated below, while others may have to
do with the specific disease characteristics of the treated
patients within each trial.
After cellular uptake of AZN by human equilibrative

and concentrative nucleoside transporters 1 and 2 [9], aza-
citidine and decitabine are modified by different metabolic
pathways to achieve their active forms (Fig. 2). The first
limiting step in this cascade is the ATP-dependent phos-
phorylation of the nucleoside to the monophosphorylated
nucleotide catalyzed by uridine-cytidine kinase for azaciti-
dine and deoxycytidine kinase for decitabine [10]. Subse-
quent phosphorylation by two different kinases yields the
active metabolites 5-aza-CTP for azacitidine or 5-aza-
dCTP for decitabine. During replication, decitabine-
derived 5-aza-dCTP is incorporated in newly synthesized
DNA. In contrast, 80–90 % of azacitidine is incorporated
in RNA as 5-aza-CTP, while 10–20 % are incorporated
into DNA after multistep conversion to 5-aza-dCTP by
the enzyme ribonucleotide reductase (Fig. 2).

DNA demethylation
At lower doses, DNA incorporation of 5-aza-dCTP im-
pairs DNA methylation by irreversible inhibition of DNA
methyltransferases (DNMT), particularly DNMT1, which
is responsible for the maintenance of methylation fol-
lowing DNA replication [11]. Effects on other DNMTs,
such as DNMT3A and DNMT3B, have only been observed
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Fig. 1 Cytidine nucleoside (a) and azanucleoside (b, c) chemical structures. Sugar moieties are indicated in grey and chemical changes between
cytidine nucleoside and azanucleosides are highlighted in red
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at higher AZN doses [12]. DNMT1 recognizes incorporated
5-aza-dCTP as natural substrate and becomes irreversibly
bound to the cytidine analogue, inhibiting DNA methyl-
transferase function and leading to its degradation [13]. As a
consequence, methylation marks become lost during DNA
replication. This hypomethylation of DNA can then lead to
re-activation of silenced tumor suppressor genes [14].
Covalent DNMT-5-aza-dCTP-DNA adducts have also

been shown to induce DNA damage ATM/ATR response
pathways resulting in growth inhibition, G2 cell cycle arrest,
and apoptosis [15]. This activation is represented by strong
induction of γ-H2AX and activation of DNA repair pro-
teins including CHK1, CHK2, and RAD51 [16]. The DNA
damage caused by AZN is repaired by the base excision re-
pair (BER) machinery and is susceptible to inhibition of
poly-ADP ribose polymerase (PARP) [17]. As DNMT1 has
also been demonstrated to have a role in DNA repair, in-
hibition of DNMT1 by AZN may also indirectly influence
DNA repair mechanisms [18]. Recent findings support
this by showing that depletion of DNMT1 by RNA
interference in combination with AZN treatment can
reduce AZN-induced DNA damage formation, thereby

decoupling DNA damage and DNA demethylation in
response to AZN [19]. This further highlights that
other mechanisms, besides DNMT inhibition, are in-
volved in AZN action.

RNA-dependent effects
Since most of the drug azacitidine is incorporated into
RNA, it is assumed that its efficacy, at least in part, is
due to RNA-dependent effects, which are cell-cycle in-
dependent. Incorporation of 5-aza-CTP into RNA in-
hibits tRNA methylation and processing [20] by
reducing tRNA methyltransferase levels [21], giving rise
to defective messenger and transfer RNAs. Furthermore,
it disrupts rRNA processing ultimately leading to inhib-
ition of mRNA and protein synthesis and thus inducing
apoptosis [22]. Recently, it has been shown that RNA in-
corporation of 5-aza-CTP is able to repress the expres-
sion of the M2 subunit of ribonucleotide reductase
(RRM2) and therefore interferes with the conversion of
ribonucleotides to deoxyribonucleotides, leading to in-
hibition of DNA synthesis and repair [23]. As decitabine
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Fig. 2 Azanucleoside uptake and intracellular metabolism. Human equilibrative and concentrative nucleoside transporters (hENT/SLC29A and
hCNT/SLC28A, respectively) and the SLC15 and SLC22 transporter families mediate azanucleosides (5-aza and 5-aza-dC) uptake. Once inside the
cell, the drugs are activated through consecutive ATP-dependent phosphorylation steps: the first one is mediated by uridine-cytidine kinase (UCK)
for 5-aza and by deoxycytidine kinase (DCK) in the case of 5-aza-dC; the enzyme nucleoside monophosphate kinase (NMPK) incorporates the
second phosphate group in both drugs; then, ribonucleotide reductase (RNR) partly converts (10–20 %) 5-aza-CDP into its deoxy form 5-aza-dCDP. Finally,
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DNA. Enzymes involved in resistance are highlighted in red, while mutated genes, which have been described to increase the sensitivity to
AZN treatment or improve overall survival in patients, are highlighted in green
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is not incorporated into RNA, it does not have any dir-
ect effects on RNA processing.

Immune effects
In addition to their demethylating activity, AZN have re-
cently been shown to induce specific immune responses
in cancer cells [24, 25, 26]. Analysis of expression changes
in response to azacitidine treatment in different cancer
cell lines (breast, colorectal, and ovarian) led to the identi-
fication of a subset of azacitidine-induced immune genes
(AIM), which can be used to classify primary tumors into
low and high expression groups. For the latter, treatment
with azacitidine combined with immunotherapy has been
suggested to be beneficial [25]. In addition, it has been
demonstrated that treatment with DNA methylation in-
hibitors sensitizes murine melanoma cells to anti-CTLA4
immunotherapy [24], suggesting that a treatment combin-
ation of AZN and PD1/PDL-1 antibodies may show syner-
gistic effects [25].
A recent study on ovarian cancer has provided an intri-

guing molecular mechanism linking AZN treatment to
the immune response. DNA methylation inhibitors were
shown to upregulate endogenous retroviruses in tumor
cells, leading to a tumor-inhibiting immune response. This
type I interferon immune response is thought to be a
result of induction of the viral defense pathway, which
detects cytosolic double-stranded RNA originating from
endogenous retrovirus genes (ERVs) re-expressed upon
AZN treatment [24]. However, if a similar mechanism also
occurs in hematologic cancers in response to AZN treat-
ment will need to be determined.
In addition to inhibition of DNA methylation and RNA

metabolism, AZN also inhibits the nuclear factor kappa B
(NFkB) pathway through inhibition of phosphorylation of
the NFkB-activating kinase IKKalpha/beta [27]. As a con-
sequence, AZN can specifically inhibit regulatory T cells
in MDS patients [28].
Furthermore, azacitidine has been reported to impair

de novo synthesis of pyrimidine through inhibition of
uridine monophosphate synthase, leading to a significant
decrease in UTP and CTP levels [29], which results in
impairment of cholesterol and lipid homeostasis and
contributes to the cytostatic effect of azacitidine [30].

Differences between azacitidine and decitabine
AZN are most toxic during S-phase of the cell cycle [31],
and while cytotoxicity requires relatively high doses, the
effect on DNA methylation preferentially occurs at lower
doses [32]. AZN are intrinsically instable and after admin-
istration undergo spontaneous hydrolysis as well as de-
amination by cytidine deaminase leading to degradation
[33]. At low doses, the effects of AZN are rapidly lost
upon drug withdrawal and therefore continuous adminis-
tration and several treatment cycles are required to sustain

response [34]. The maximum plasma concentration of
active AZN-derived metabolites achieved by standard treat-
ment is 3–11 μM for azacitidine or 0.5 μM for decitabine
[35, 36, 37]. These concentrations have been shown to in-
duce transient demethylation in various hypermethylated
loci in patients and thus provide valuable proof of
mechanism [37, 38]. However, a clear correlation between
the extent of genome-wide DNA hypomethylation, re-
expression of tumor suppressor genes, and clinical response
to AZN has not been demonstrated thus far.
Due to its primary incorporation into newly synthe-

sized DNA, decitabine has been shown to be more po-
tent than azacitidine in vitro, leading to inhibition of
DNMT1, DNA hypomethylation, and DNA damage in-
duction at concentrations two- to tenfold lower than
azacitidine [10, 39, 40, 41]. Unlike azacitidine, decitabine
is an S-phase specific agent that only targets proliferating
cells in S-phase while other stages of the cell cycle remain
unaffected [42]. Taking into account the short half-life, to
improve treatment success, shorter intervals of decitabine
treatment or continuous infusion are needed to increase
the probability that all cancer cells enter S-phase and thus
the therapeutic time window [43]. Hypomethylation after
decitabine treatment is dose dependent, peaking at 10–
15 days after administration and recovering to baseline
at 4–6 weeks [44]. Although preclinical data suggested
that continuous infusion of decitabine may be advanta-
geous, dose-finding trials indicated that short bolus infu-
sions in patients with a poor hematological status may be
better than continuous infusion, lower doses are better
than higher doses, and dose intensity is important for effi-
cient DNA demethylation [8, 45]. These observations led
to the current standard dosing schedule of 20 mg/m2 per
day over 5 days. However, because this trial had only a
small number of patients in the dosing regimens deemed
as inferior, novel continuous dosing schedules merit
clinical investigation. In contrast to decitabine, azaci-
tidine is administered subcutaneously at a dose of
75 mg/m2/day over 7 days. Other schedules of azaciti-
dine (e.g., over 5 or 10 days) have also been examined
but not proven superior.
Importantly, studies examining gene expression in hu-

man acute myeloid leukemia (AML) cell lines showed that
patterns of drug-modulated gene expression were non-
overlapping between azacitidine and decitabine [46], indi-
cating that both drugs indeed may have different target
genes. This observation in addition to the biochemical dif-
ferences may explain why one drug may work in a patient
while the other may not.

Current status of clinical application of
hypomethylating agents in hematologic cancers
Azacitidine (Vidaza®) and decitabine (Dacogen®) were
first tested for the treatment of MDS decades ago with
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the first large randomized trial published in 2002 [5] and
have emerged as very promising drugs in this field. MDS
are a heterogeneous group of clonal hematopoietic stem
cell disorders characterized by dysplastic and ineffective
hematopoiesis with clinically apparent cytopenias in the
peripheral blood and a predisposition to AML. Primarily
a disease of the elderly, treatment options are limited
due to comorbidities and a high progression rate into
secondary AML in one third of the patients [47]. The
only proven curative approach for MDS is allogenic
stem cell transplantation (allo-SCT), which is not a
feasible option in the majority of MDS patients.
Since the FDA approval of azacitidine for all MDS sub-

types in 2004 and the positive results of several clinical tri-
als, the drug has been widely used in the clinic [5, 47, 48]
and has become the standard of care for higher-risk MDS
patients (IPSS intermediate-2 and high or IPSS-R very high
and intermediate) not eligible for allo-SCT [48, 49]. The
international randomized phase III multicenter “AZA-001”
trial revealed that patients benefit from hematologic im-
provement (47 %) and a significant delay in progression to
AML as well as a prolonged survival under azacitidine
treatment vs. conventional care regimens with a median
overall survival 24.5 vs. 15 months [48]. These results make
azacitidine the first drug to confer a survival benefit to
MDS patients. Most responders achieve a first response
within 6 cycles of subcutaneous azacitidine injection
(75 mg/m2 per day for 7 days every 28 days), and continu-
ation of treatment after first response improves response
quality [50]. Treatment continuation is recommended until
progression of the disease or unacceptable toxicity [51].
Ongoing studies are currently examining the efficacy

of oral azacitidine which shows a higher bioavailability
[52, 53]. The oral formulation (maximal tolerated dose
480 mg) is under investigation to serve as a long-term low-
intensity treatment option (extended to 14 or 21 days cycles)
for lower-risk MDS with additional poor prognostic factors
such as severe thrombocytopenia (AZA-MDS-003 trial) or
as a post-transplant maintenance therapy for MDS as well
as AML patients (CC-486-AML-002 trial) [53, 54, 55].
In contrast to the results of the AZA-001 study for

azacitidine, clinical trials for decitabine have thus far not
been able to show an overall survival benefit in patients
with MDS. Initial phase II trials in Europe using decita-
bine at a total dose of 225 mg/m2 as a continuous infu-
sion over 72 h or at a total dose of 135 mg/m2 using a
3-day intravenous administration over 4 h three times a
day showed a favorable overall response rate between 49
and 54 %, comparable to that of azacitidine. In a ran-
domized phase III trial testing decitabine in a schedule
of 15 mg/m2 for a total of nine doses over 72 h com-
pared to best supportive care, the overall response rate
was 30 % [7]. Patients receiving decitabine had a pro-
longed median time to progression to AML or death

compared to patients receiving best supportive care, but
overall survival was not improved. The drug has there-
fore not been licensed for treatment of MDS in Europe
so far, although it is approved in the USA in this indica-
tion. Results of a schedule which can be administered in
the outpatient setting using 20 mg/m2 decitabine as
intravenous infusion for five consecutive days yielded
comparable clinical efficacy [56].
Based on the encouraging results of the MDS trials for

hypomethylating agents, these drugs are also being
evaluated for the treatment of AML, in particular or
patients not eligible for intensive chemotherapy. As in-
cidence of AML increases with age and our population
grows increasingly older, the median age at diagnosis is
now approximately 70 years. Treating elderly AML pa-
tients presents a significant therapeutic challenge as inten-
sive treatment is often not possible due to comorbidities
and poor performance status. In addition, AML of the
elderly more often exhibit adverse cytogenetic and mo-
lecular genetic features leading to poor outcome after in-
tensive chemotherapy. Thus, there is an urgent need for
effective but less toxic therapies for elderly AML patients.
First data on the efficacy of azacitidine in AML emerged

from the AZA-001 trial as a significant percentage of pa-
tients in the AZA-001-MDS trial were originally classified
as the advanced MDS subtype RAEB-t with 20–30 % bone
marrow blasts. This subgroup no longer exists in the
WHO classification of MDS and is now considered as
AML which is defined by 20 % or more blasts in the bone
marrow. A separate analysis of this AML subgroup within
the AZA-001 trial showed that these patients benefitted
from a significantly improved overall survival compared to
conventional care [57]. Similarly, azacitidine treatment has
been associated with a median overall survival of ap-
proximately 9 to 10 months in patients with AML who
participated in the Austrian Azacitidine Registry or in a
French compassionate use program [58, 59]. These en-
couraging results paved the way for a large randomized
phase III trial in AML patients older than 65 years and
with bone marrow blast counts >30 % (AZA-AML-
001). Patients with AML were randomized to receive
either azacitidine (75 mg/m2 days 1–7 q28) or investi-
gator’s choice of conventional care (CCR, consisting of
BSC, low-dose ARA-C or intensive chemotherapy) [60].
Although this trial did not reach its primary endpoint, the
results showed an improved overall survival for patients
treated with azacitidine compared to conventional care
(10.4 vs. 6.5 months, p = 0.1). Remission rates were not in-
creased in the azacitidine arm compared to CCR but the
subgroup of patients with adverse cytogenetics or AML
with myelodysplasia-related changes showed a significantly
improved overall survival. This trial demonstrates that aza-
citidine is superior to CCR in biologically poor-risk sub-
groups and makes azacitidine the only drug so far to show
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a survival benefit in elderly AML patients with adverse
cytogenetics [60]. Based on the positive results of the AZA-
AML-001 trial, azacitidine was licensed for the treatment
of AML in patients older than 65 years in 2015. Azacitidine
was also evaluated as an addition to standard intensive
chemotherapy with the cytotoxic agents daunorubicin and
cytosine arabinoside (ARA-C) for the treatment of elderly
AML patients older than 60 years but showed increased
toxicity and failed to improve overall survival for unse-
lected patients [61], although patients with mutations
in DNMT3A seemed to derive a survival benefit from
the addition of azacitidine (Müller-Tidow, personal
communication).
Similarly, decitabine was also evaluated for the treat-

ment of elderly AML in a large phase III randomized
trial (DACO-16), where the drug was tested against BSC
or low-dose ARA-C [62]. Decitabine significantly im-
proved response rates compared to BSC/low-dose ARA-
C (17.8 vs. 7.8 months, p = 0.001) but overall survival
was not significantly increased 7.7 vs. 5 months, p = 0.1).
Nevertheless, decitabine was licensed for the treatment
of elderly AML in Europe in 2013. It is currently not ap-
proved in this indication in the USA.
A remarkable clinical hallmark of both hypomethylating

agents is that they achieve significant clinical efficacy and
can confer a survival benefit in MDS and AML despite in-
ducing only low complete remission rates of around 20 %.
This challenges the long-standing dogma that achieve-
ment of complete remission is necessary for improvement
of overall survival. It also further demonstrates that we
lack a sufficient understanding of the systemic and cel-
lular actions of these drugs, which might involve still
unrecognized molecular mechanisms.

Differences in outcome between azacitidine and
decitabine trials
A direct comparison between azacitidine and decitabine
in terms of efficacy within a controlled clinical trial has
not been performed so far. It is therefore difficult to ac-
curately assess why the survival outcomes in the ran-
domized MDS trials were so different between both
drugs. Although remission rates were similar for azaciti-
dine and decitabine, the overall survival in the experi-
mental arm was significantly shorter in the decitabine
trial compared to the azacitidine trial [7, 48]. Besides the
possibility that this may be due to differing mechanisms
of action, it is also clear that the patient characteristics
in the two large randomized MDS trials were divergent.
In addition, patients enrolled in the decitabine trial re-
ceived a maximum of 8 cycles of therapy (median 4 cy-
cles) while patients in the azacitidine trial were treated
until progression (median 9 cycles). A detailed compari-
son of patients’ characteristics in both trials is shown in
Table 1 and the current approval status for azacitidine

and decitabine in MDS and AML in Table 2. The more
direct metabolic activation pathway to DNA incorpor-
ation of decitabine compared to the primarily RNA in-
corporation of azacitidine has been suggested to make
decitabine a more potent compound than azacitidine. A
large retrospective matched-pair analysis of patient out-
comes in 300 patients treated with either azacitidine or
decitabine suggested that while remission rates were
similar between the two drugs, overall survival was de-
creased in patients >65 years treated with decitabine
compared to azacitidine [63]. This seemed primarily due
to an increased infection rate in patients receiving deci-
tabine, perhaps due to higher cytotoxicity and possibly
an additional contributing factor to the inferior outcome
in terms of overall survival.

Limitations of the treatment and possible causes
of acquired and primary resistance
The clinical outcome of patients with MDS is quite vari-
able even within the same WHO subtype and when classi-
fied according the revised IPSS score, which has become
the standard prognostic model in MDS [47]. Since every
second patient has no clinical benefit from azacitidine
treatment and at least 4 to 6 cycles are required before
treatment failure becomes apparent [50], the development
of response predicting biomarkers is an unmet need for
improving patient selection and designing better thera-
peutic options.
In the past few years, a large number of recurring

somatic gene mutations have been discovered in patients
with MDS [64, 65, 66]. First studies analyzing the

Table 1 Comparison of patient characteristics between the
AZA-001 trial and the EORTC 0611 trial for high-risk MDS

AZA-001 trial:
azacitidine

EORTC 0611 trial:
decitabine

Eligibility criteria IPSS INT2/high IPSS INT1/INT2/high

MDS with 5–30 % blasts MDS with 11–30 %
blasts or <10 % blasts
and poor cytogenetics

CMML with >10 %
blasts and WBC
<13 G/L

CMML independent of
blast counts or WBC
counts

No t-MDS allowed t-MDS allowed

Treatment schedule 75 mg/m2

days 1–7, q28
15 mg/m2 3× day q42

Treatment until
progression

Maximum number
of 8 cycles

Patient cohort

IPSS high 46 % 38.70 %

Poor cytogenetics 28 % 48 %

t-MDS 0 12.60 %

Median cycle number 9 4
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mutation status of a panel of genes failed to provide pre-
dictive markers that would allow identification of re-
sponders prior to treatment initiation with
hypomethylating agents [67]. Moreover, higher-risk MDS
patients frequently progress to AML even when therapy is
continued [48]. Eventually, all patients including those
initially achieving remissions or hematologic improvement
develop resistances to AZN leading to treatment failure
[48]. These failures can be divided into two broad cate-
gories: refractory or primary AZN failure, which is seen
in patients that show no response to at least 6 cycles of
therapy, and secondary failure in patients that either
progress under treatment or relapse after termination
of treatment. Although the processes responsible for
both primary and secondary AZN failures have been a
topic of intense research, the molecular mechanisms of
resistance are not well understood.
First causes of AZN resistance have been found both

in the metabolic pathways that activate AZN and path-
ways linked to DNA methylation. A recent study analyzing
decitabine response in MDS patients described alterations
in nucleoside metabolism leading to difference in response
[68]. In this study, 32 responders and non-responders as
well as 14 patients showing complete remission and subse-
quent relapse were examined. In responders, the ratio of
cytidine deaminase (CDA) to deoxycytidine kinase (DCK)
was higher compared to non-responders [68]. This sug-
gests that increased deamination and decreased phosphor-
ylation of decitabine is able to confer primary resistance to
the drug, although the exact mechanisms leading to a
changed CDA/DCK ratio are not known. Similar results
were obtained in patients treated with azacitidine, in
which the expression of uridine cytidine kinase was lower
in patients without a response than in patients responding
to azacitidine treatment [69].
Downstream of the AZN action, several gene muta-

tions have been proposed to affect treatment outcome.
For example, several groups have found that mutations in
TET2, an enzyme that converts 5-methylcytosine to 5-
hydroxymethylcytosine correlated with increased sensitivity

to AZN treatment [70, 71, 72]. This correlation was more
significant in the absence of ASXL1 mutations [70]. Despite
correlation with response, mutated TET2 was not associ-
ated with improved overall survival [70, 72]. Furthermore,
these studies could not identify a mutational pattern asso-
ciated with the absence of response and thus the pres-
ence of specific mutations cannot be used to identify
non-responders. Mutations in other genes involved in
epigenetic regulation, such as DNMT3A, ASXL1, and
IDH1/IDH2, have also been suggested to affect AZN re-
sponse [72]. Moreover, the expression of BCL2L10, a
member of the Bcl2 family preventing cell apoptosis,
positively correlates with AZN resistance [73].
Despite these reports, efforts to correlate response to

AZN with hypermethylation patterns have not yielded
clear-cut results. None of the studies were able to reveal
clinical or molecular patterns to identify non-responders,
and no diagnostic tool can yet be used as a basis for forgo-
ing HMA treatment. Neither the measurement of pre-
treatment DNA methylation [66] nor the presence of TP53
mutations is predictive for response to azacitidine in MDS,
although as expected TP53 mutated patients have a
poor overall survival despite response [74]. ASXL1-mu-
tated clones seem to mediate a partial resistance to aza-
citidine, as they showed a tendency to lower likelihood
of response [70]. But even in responding patients, the drug
is not curative and response is lost over time. Recently,
Meldi et al. identified 167 differentially methylated DNA
regions at baseline in patients with the subtype of chronic
myelomonocytic leukemia (CMML) that could predict
response to decitabine at the time of diagnosis [75]. This
study also showed that upregulation of the cytokines
CXCL4 and CXCL7 may contribute to primary decita-
bine resistance, as these molecules were overexpressed
in non-responding patients. Ongoing studies are currently
investigating similar correlations between methylation sta-
tus and response in MDS.
It has been shown that azacitidine does not eradicate

the leukemia stem cell (LSC)-containing population
even in patients achieving a complete remission. A later

Table 2 Approval status for azacitidine and decitabine in MDS and AML

Azacitidine (Vidaza) Decitabine (Dacogen)

MDS AML MDS AML

USA (FDA) All subtypes AML 20–30 % blasts
(formerly RAEB-t)

All subtypes AML <30 % blasts
(formerly RAEB-t)

Dose 75 mg/m2 s.c. days
1–7 q28

75 mg/m2 s.c. days
1–7 q28

15 mg/m2 i.v. 3× daily days
1–3 q42 or 20 mg/m2 i.v.
days 1–5 q28

15 mg/m2 i.v. 3× daily
days 1–3 q42 or 20 mg/m2 i.v.
days 1–5 q28

Europe (EMA) INT2/high-risk MDS according
to IPSS, CMML 10–29 % blasts,
not eligible for allogeneic SCT

AML ≥65 years regardless of
blast counts, not eligible for
allogeneic SCT

Not approved AML ≥65 years not candidates for
standard induction chemotherapy

Dose 75 mg/m2 s.c. days 1–7 q28 75 mg/m2 s.c. days 1–7 q28 n/a 20 mg/m2 i.v. days 1–5 q28
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expansion of this LSC-containing population leads to re-
lapse [76] and thus provides a possible explanation for
AZN treatment failure over time. Recently, it was also
shown for CMML that the mutation allele burden in
responding patients remains stable during treatment with
AZN despite changes in DNA methylation and gene ex-
pression [77]. These data indicate that hematologic re-
sponse is primarily due to epigenetic modulation rather
than eradication or suppression of the leukemic clone.
Why this epigenetic modulation fails to be effective over
time is not understood at present and is the focus of on-
going research efforts. Acquired resistance to AZN may
conceivably also be due to acquisition of new gene muta-
tions over time or a growth advantage of primary resistant
clones such as those with mutant ASXL1. These hypoth-
eses are currently being examined in several studies analyz-
ing serial bone marrow samples of patients over time as
well as other efforts developing and analyzing novel
murine models of MDS.

Unmet needs and ongoing clinical trials
MDS patients failing treatment with AZN have a very
poor outcome with a median survival of 5.6 months
[78]. Switching the AZN agent at progression (i.e., from
azacitidine to decitabine or vice versa) is an option that
has been described as successful in some cases although
extensive data is lacking [79]. Unmet medical needs are
therefore improvement of response rates and response
duration for patients receiving AZN as well as develop-
ment of alternative therapies after failure of AZN.
To this end, the effectiveness of several combination ther-

apies is currently being investigated. Since DNA methyla-
tion and hypoacetylation often occur at the same time and
ensure robust inhibition of gene expression, the combin-
ation of AZN with histone deacetylase (HDAC) inhibitors
has been proposed to improve treatment outcome. Indeed,
in vitro experiments combining AZN with HDAC inhibi-
tors have shown synergistic re-expression of a subset of
genes [80]. Based on this observation, several clinical trials
have evaluated the combination of AZN with HDAC in-
hibitors, and while some had promising results, others
demonstrated significant toxicity (reviewed in [81]). Thus,
combination therapy with HDAC inhibitors requires fur-
ther investigation. Currently, combination therapies of
mocetinostat (NCT02018926) or pracinostat (MEI-005,
NCT01993641) with azacitidine are being tested.
Azacitidine and decitabine have also been tested in

combination with (i) immunomodulatory drugs (lenalido-
mide, monoclonal antibodies) or (ii) chemotherapy. Sim-
ultaneous administration of azacitidine and lenalidomide
was highly effective in higher-risk MDS patients with an
overall response rate of 72 % [82]. The best response was
observed in patients with at least one mutation in TET2,
IDH1/2, or DNMT3A but also induced significantly higher

toxicity [82]. Decitabine in combination with the monoclo-
nal antibody gemtuzumab has shown improved response
rates in MDS and AML patients compared to historical
controls [83]. Furthermore, next-generation epigenetic
agents, such as other DNMT inhibitors, compounds dir-
ectly targeting mutated or dysregulated proteins, including
Idh1, Idh2, Ezh2, and Brd2/4, as well as kinase inhibitors
(rigosertib, volasertib) [84] and immune checkpoint inhib-
itors (PD-1/PD-L1) are currently being tested [85].
Ongoing phase II/III trials are also examining the ad-

ministration of azacitidine for the prevention or treat-
ment of relapse in patients after hematopoietic stem cell
transplantation (RELAZA trial, NCT01462578). Also, the
oral formulation of azacitidine is currently being tested in
a phase III trial for continuous administration and ex-
tended low dose schedules as a maintenance therapy in
AML (Quazar AML-001 trial, NCT01757535) as well as
for lower-risk MDS patients with low platelet counts
(AZA-MDS-003 trial, NCT01566695).
In addition to myeloid malignancies, azacitidine is also

being investigated in lymphoid malignancies such as re-
lapsed aggressive B-cell lymphomas (DLBCL-001 trial,
NCT02343536) or T-cell lymphomas in combination with
chemotherapy and other agents such as proteosome inhibi-
tors like bortezomib or HDAC inhibitors like romidepsin.

Hypomethylating agents for treatment of solid
tumors
Due to its promising results in hematologic malignan-
cies, AZN are further being tested in phase I/II clinical
trials for advanced solid tumors—mainly colorectal cancer,
small-cell lung carcinomas, ovarian cancer, and breast
cancer. Low-dose decitabine in combination with cyto-
toxic drugs has shown encouraging results with a response
rate up to 60 % [86]. Furthermore, combination of low-
dose azacytidine with the HDAC inhibitor entinostat in
refractory advanced non-small cell lung cancer led to im-
pressive responses in a subset of patients [87].
A detailed description of epigenetic therapy (including

AZN) in solid tumors has recently been reviewed [88].

Conclusions
AZN have provided a significant improvement in the
treatment of higher-risk MDS and elderly AML. However,
while they show significant efficacy, these patients con-
tinue to have an overall poor prognosis. Thus, it will be
important to obtain a better understanding of the AZN
action and to identify and validate biomarkers that predict
treatment response as well as understand the mechanisms
leading to AZN failure.
Although preclinical studies indicate that decitabine is a

more potent antileukemic agent than azacitidine [40, 41],
the clinical data suggest that azacitidine is more effective
than decitabine. In order to elucidate this apparent
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contradiction, future investigations of decitabine should
be performed to optimize the current dose schedule.
Certainly, it has become clear that single-agent AZN

treatment is insufficient for achievement of long-term
remissions, and therefore, the suitability and effective-
ness of combining AZN with other drugs needs to be in-
vestigated in order to find novel strategies to improve
treatment success and its durability for patients.
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