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Abstract Histone deacetylases (HDACs) are homologous
to prokaryotic enzymes that removed acetyl groups from
non-histone proteins before the evolution of eukaryotic
histones. Enzymes inherited from prokaryotes or from a
common ancestor were adapted for histone deacetylation,
while useful deacetylation of non-histone proteins was
selectively retained. Histone deacetylation served to prevent
transcriptions with pathological consequences, including
the expression of viral DNA and the deletion or dysregu-
lation of vital genes by random transposon insertions.
Viruses are believed to have evolved from transposons,
with transposons providing the earliest impetus of HDAC
evolution. Because of the wide range of genes potentially

affected by transposon insertions, the range of diseases that
can be prevented by HDACs is vast and inclusive.
Repressive chromatin modifications that may prevent
transcription also include methylation of selective lysine
residues of histones H3 and H4 and the methylation of
selective DNA cytosines following specific histone lysine
methylation. Methylation and acetylation of individual
histone residues are mutually exclusive. While transposons
were sources of disease to be prevented by HDAC
evolution, they were also the source of numerous and
valuable coding and regulatory sequences recruited by
“molecular domestication.” Those sequences contribute to
evolved complex transcription regulation in which compo-
nents with contradictory effects, such as HDACs and HATs,
may be coordinated and complementary. Within complex
transcription regulation, however, HDACs remain ineffec-
tive as defense against some critical infectious and non-
infectious diseases because evolutionary compromises have
rendered their activity transient.
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Introduction

Histone deacetylases (HDACs) form repressive chromatin
by removing acetyl groups from histones and are an
essential part of defense against a wide range of infectious
and non-infectious disease conditions (Gregoretti et al.
2004). Beneficial biological functions have evolutionary
origins. Most functions are imperfect, if not seriously
flawed, because they reflect evolutionary compromises
between competing requirements of the organism (Nesse
and Williams 1995; Fromer and Shifman 2009; Foit et al.
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2009). An understanding of the functions and limitations of
HDACs in disease prevention may be enhanced by an
examination of their evolutionary origins.

Histone acetylation and deacetylation began after the
evolution of histones, the protein components of eukaryotic
nucleosomes that organize chromatin and regulate the DNA
binding of other proteins that determine whether transcription
takes place (Berger 2007; Taverna et al. 2007; Zhang et al.
2003a). Although enzymes with considerable homology to
eukaryotic HDACs of all four classes are widespread in
prokaryotes, their functions are different (Hildmann et al.
2007; Gregoretti et al. 2004; Ledent and Vervoort 2006).
Most, if not all, such enzymes, in fact, existed before the
evolution of histones (Hildmann et al. 2007; Gregoretti et al.
2004; Ledent and Vervoort 2006). Their functions include
deacetylation of polyamines, acetyl coenzyme A synthetase
and other non-histone proteins (Leipe and Landsman 1997;
Gardner et al. 2006). The deacetylase capacity that eukary-
otic HDACs inherited from prokaryotes or from a common
ancestor could be easily adapted to deacetylation of
eukaryotic histones, as demonstrated experimentally (Finnin
et al. 1999; Hildmann et al. 2004). Eukaryotic HDACs
selectively maintain the inherited ability to deacetylate non-
histone proteins (Zhang et al. 2003b; Ito et al. 2002).
HDACs have been well conserved in eukaryotes for at least
100 Ma (Ekwall 2005; Heckman et al. 2001).

Histone modifications and transcription

In addition to histone deacetylation, repressive chromatin
modification includes the methylation of a number of lysine
residues in the amino (N)-terminal tails of histone 3 (H3)
and histone 4 (H4), including lysine 9 (H3K9) of histone 3
(Martens et al. 2005; Maksakova et al. 2008; Kondo and
Issa 2003; Lewin 2008; Gendrel et al. 2002; Liu et al. 2008;
Latham and Dent 2007). H3K9 methylation following
H3K9 deacetylation initiates recruitment of DNA methyl-
transferase which adds a methyl group to DNA cytosines in
CpG context (Geiman and Robertson 2002; Martens et al.
2005; Maksakova et al. 2008; Yoder et al. 1997; Lewin
2008; Gendrel et al. 2002).

Histone acetylation involves the covalent bonding of an
acetyl group transferred from acetyl coenzyme A to a lysine
residue in the histone N-terminal tail (Grunstein 1997; Martin
et al. 2007; Sengupta and Seto 2004). The acetyl group is
widely believed to partially neutralize the positive electro-
static charge of the histone and reduce the ionic bonding
between the histone and the negatively charged DNA,
thereby making local DNA more accessible to transcription
factor binding (Grunstein 1997; Zhang et al. 2003a; Liu et al.
2008; Sengupta and Seto 2004). Acetylated lysines are also
reported to recruit chromatin remodeling proteins and protein

complexes such as SWI/SNF (Liu et al. 2008; Latham and
Dent 2007; Taverna et al. 2007; Sengupta and Seto 2004;
Lewin 2008). Histone methylation is believed to stabilize the
positive charge of histones (Latham and Dent 2007;
Grunstein 1997; Maksakova et al. 2008). Methylated lysines
are also reported to serve as binding sites for the recruitment
of proteins and protein complexes that impact transcription
(Liu et al. 2008; Latham and Dent 2007; Maksakova et al.
2008; Zhang et al. 2003a; Bannister et al. 2001; Taverna et
al. 2007).

Dimethylated or trimethylated H3K9 provides for the
binding of heterochromatin protein 1 (HP1) through its
chromodomain (Liu et al. 2008; Latham and Dent 2007;
Zhang et al. 2002a; Bannister et al. 2001; Taverna et al.
2007). Since HP1 complexes with both histone deacety-
lases and the histone methyltransferase SUV39H1, it
recruits to the methylated residue the capacity to replace
acetylation with methylation on nearby histone residues and
thereby spread repressive chromatin by a positive feedback
loop to create heterochromatin (Zhang et al. 2002a; Latham
and Dent 2007; Bannister et al. 2001; Vaute et al. 2002;
Taverna et al. 2007). H3K36 methylated by histone
methyltransferase Set2 has been shown to recruit a complex
containing yeast HDAC Rpd3 through the chromodomain
of the component Eaf3 (Keogh et al. 2005; Latham and
Dent 2007). Additional effector proteins that bind at
methylated H4K20 and H3K4 have been characterized
(Taverna et al. 2007). Most of the known binding at
methylated H3K4 has been shown to actually promote
acetylation of other histone residues and often transcription
activation (Latham and Dent 2007; Liu et al. 2008; Taverna
et al. 2007; Berger 2007).

Specific lysine residues on histones H3 and H4 are
subject to methylation and/or acetylation to alter the DNA
binding of regulatory proteins (Martens et al. 2005; Lewin
2008; Liu et al. 2008; Kondo et al. 2008). On histone H3,
lysines 9, 14, 18, 23, 27, 36, and 56 and on histone H4,
lysines 5, 8, 12, 16, and 20 may be acetylated (Liu et al.
2008; Latham and Dent 2007; Berger 2007). A negative
charge can also be added to histone H3 by phosphorylation
of serine 10 or 28 (Liu et al. 2008). Histone modification is
not limited to acetylation and methylation and occurs in
numerous patterns, with extensive cross-regulation (Latham
and Dent 2007; Maksakova et al. 2008; Taverna et al. 2007;
Berger 2007; Zhang et al. 2003a). Methylation and
acetylation of lysine residues are mutually exclusive and
competitive (Maksakova et al. 2008; Liu et al. 2008;
Latham and Dent 2007; Taverna et al. 2007; Mutskov and
Felsenfeld 2004; Schubeler et al. 2000; Irvine et al. 2002).
Lysine methylation requires deacetylation and lysine acet-
ylation requires demethylation (Maksakova et al. 2008;
Latham and Dent 2007; Mutskov and Felsenfeld 2004;
Schubeler et al. 2000; Irvine et al. 2002).
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DNA is methylated by DNA methyltransferases
(DNMTs), which convert target cytosines to 5-
methylcytosine (Tost 2010; Geiman and Robertson 2002;
Liu et al. 2008). Target cytosines are predominantly found
in CpG dinucleotides and are especially prevalent in
promoter regions (Tost 2010; Liu et al. 2008; Geiman and
Robertson 2002). DNA methyltransferases DNMT3A and
DNMT3B transfer a methyl group from S-adenosyl-L-
methionine to cytosines de novo, while DNMT1 establishes
methylation on the new strand produced during the S phase
of interphase (Tost 2010; Geiman and Robertson). Methyl-
ated DNA becomes bound by DNA-methyl-binding domain
(MBD) proteins (MBD1, MBD2, and MBD4), SRA
domain proteins (UHRF1 and UHRF2) and certain zinc
finger proteins (kaiso, ZBTB4, and ZBTB38), all of which
recruit components with transcription repression activity,
including histone deacetylation and methylation (Tost 2010;
Sasai and Defossez 2009). Repressive chromatin is thereby
spread. Repressive chromatin at the transcription start site
or at the binding sites of activation transcription factors
prevents transcription (Tost 2010).

HDACs as protection from transposons and viruses

The functions and limitations of human HDACs are
illustrated by their response to newly integrated viral
DNA. As reported (Greger et al. 2005; Katz et al. 2007),
human HeLa cells have been experimentally infected with
avian sarcoma virus (ASV), a retrovirus that normally
infects birds. It has been shown (Greger et al. 2005; Katz et
al. 2007) that histone deacetylases HDAC1 and HDAC2 are
recruited by the host nuclear protein Daxx and quickly
accumulate at ASV DNA recently integrated into human
chromosomal DNA. Modifying local chromatin by remov-
ing acetyl groups from histone tails, the HDACs create
repressive chromatin to prevent transcription of viral DNA
by the long terminal repeat (LTR) promoter and prevent
reproduction of the virus (Greger et al. 2005; Katz et al.
2007). Reproduction of integrated human cytomegalovirus
by LTR promoter transcription is also prevented by HDACs
recruited by Daxx (Preston and Nicholl 2006; Hollenbach
et al. 2002). In addition, human transcription factors YY1
and LSF recruit HDAC1 to the LTR of integrated human
immunodeficiency virus type 1 (HIV-1), where it represses
transcription of the HIV-1 provirus (Coull et al. 2000).

The evolutionary relationships between viruses and
transposons and between retroviruses and retrotransposons
have been a long-standing controversy. Sequencing and
comprehensive phylogenetic analysis and network analysis
have now provided evidence that retroviruses and other
reverse transcribing viruses evolved from LTR retrotrans-
posons (Llorens et al. 2009). They are reportedly contained,

along with the LTR retrotransposons, within five families
present within plants, fungi and animals (Llorens et al.
2009). It should come as no surprise, therefore, that the
epigenetic mechanisms currently applied to suppress tran-
scription of integrated provirus are believed to have
evolved to prevent expression and transposition of trans-
poson DNA, which can interrupt vital host genes through
random insertion and pathologically alter gene function
or activity (Slotkin and Martienssen 2007; Martens et al.
2005; Mirouze et al. 2009; Brunmeir et al. 2010;
Maksakova et al. 2008; Maksakova et al. 2006; Goodier
and Kazazian 2008; Zeh et al. 2009; Matzke et al. 2000;
Yoder et al. 1997). Human diseases known to result from
random transposon insertions number at least 65 (Goodier
and Kazazian 2008; Belancio et al. 2008; Deininger and
Batzer 1999) and their diversity is virtually unlimited, as
illustrated by Table 1.

Repressive chromatin, resulting from HDACs and
histone methyltransferases, prevents transposons from tran-
scribing proteins necessary for transposition (Slotkin and
Martienssen 2007). The histone and DNA methylation
required to silence a newly integrated transposon or
provirus occurs only after substantial silencing by deacety-
lation has already begun (Maksakova et al. 2008; Latham
and Dent 2007; Mutskov and Felsenfeld 2004).

Domestication and its legacy

Transposon-inspired defense mechanisms are not limited to
methylation and deacetylation-mediated transcription re-
pression but include post-transcriptional processes involv-
ing non-coding RNA and additional back-up defense
mechanisms (Goodier and Kazazian 2008; Zeh et al.
2009; Mirouze et al. 2009). Even the acquired immunity
mediated by B cell-produced antibodies and T cell receptors
appears to owe its existence to transposons (Kapitonov and
Jurka 2005; Slotkin and Martienssen 2007). In the case of
antibodies and T cell receptors, the RAG1 protein respon-
sible for the V(D)J recombination, upon which antibodies
and T cell receptors depend for their variable specificity,
has been shown to be likely derived from a transposase
encoded by a DNA transposon of the Transib superfamily
circulating in fruit fly, mosquito, sea urchin and other
genomes (Kapitonov and Jurka 2005). In the case of the
RAG1 protein, a transposon was not a threat inspiring
protective adaptation but rather an apparent source of a
valuable mechanism (Kapitonov and Jurka 2005; Slotkin
and Martienssen 2007).

Host genomes have, at low frequency, recruited and
adapted both protein coding and regulatory sequences from
transposons, in a process known as “molecular domestica-
tion,” even as they have experienced success in the restraint
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of transposon transposition (Zeh et al. 2009; Feschotte
2008; Goodier and Kazazian 2008). Even the essential gene
human telomerase reverse transcriptase (hTERT) is
reported to have originated from a non-LTR retrotransposon
(Nakamura and Cech 1998). Transposons contain, in the
LTR, their own promoters and enhancers (Katz et al. 2007;
Zeh et al. 2009; Lewin 2008; Cohen et al. 2009). According
to Jordan et al. (2003), hundreds of human genes are
regulated in part by sequences derived from either
regulatory or coding segments of transposons. Bourque et
al. (2008) revealed that mammalian transcription factor
binding sites are substantially derived from transposons.

Success in the inhibition of transposon movement is
exhibited by the finding, according to Pace and Feschotte
(2007), that the mobility of primate DNA transposons
ended 37 Ma ago, even though DNA transposons in 125
families continue to make up about 3% of the human
genome. With the possible exception of an endogenous
retrovirus, the only transposons known to be now actively
transposing in the human genome are non-LTR retrotrans-
posons (Goodier and Kazazian 2008; Mills et al. 2007). As
demonstrated in the studies by Arnaud Le Rouzic et al. (Le
Rouzic et al. 2007), loss of transposition occurs over
thousands of generations only if and when the rate of actual
transposition is held below the rate by which mutations
eliminate the enabling molecular mechanisms. Due to
mutations of transposition machinery, the number of
autonomous transposons, with transposition capacity,
declines slowly while the number of non-autonomous
copies increases as a result (Le Rouzic et al. 2007).
Mutations of transposition machinery are generally adap-
tive and not selected against (Le Rouzic et al. 2007).

Gain of adaptive functions through “domestication” in
combination with loss of the dangers of transposition seems
to represent the best in natural selection. Because of
“domestication” of useful transposon sequences, regulation
of gene expression is fundamentally and profoundly

changed and more complex (Jordan et al. 2003; Bourque
et al. 2008; Zeh et al. 2009; Feschotte 2008).

HDACs in yeast and humans

As shown in Table 2, four classes of human HDACs are
recognized, with homologous counterparts in both yeast and
prokaryotes (Hildmann et al. 2007; Gregoretti et al. 2004;
Ekwall 2005; de Ruijter et al. 2003). No fungal enzymes are
classified as class 4 HDACs (Gregoretti et al. 2004; Ledent
and Vervoort 2006). Horizonal transfer as a part of class 4
evolution has been suggested (Ledent and Vervoort 2006).
Human class 1 enzymes are zinc ion dependent and include
HDAC1, HDAC2, HDAC3, and HDAC8 (Hildmann et al.
2007; Gregoretti et al. 2004; de Ruijter et al. 2003). Class 2
enzymes, also zinc ion dependent, include HDAC4, HDAC5,
HDAC6, HDAC7, HDAC9, and HDAC10 (Hildmann et al.
2007; Gregoretti et al. 2004; de Ruijter et al. 2003). Class 4
enzymes, also zinc dependent, include HDAC11 only
(Hildmann et al. 2007; Gregoretti et al. 2004; Gao et al.
2002). Class 3 HDACs, also called sirtuins, are structurally
dissimilar to other human HDACs and are dependent on
nicotinamide adenine dinucleotide (NAD+) (Hildmann et
al. 2007; Grozinger and Schreiber 2002; Finnin et al.
1999; Vaquero 2009; Sauve et al. 2001). Class 3 HDACs
do not release acetyl groups as acetate as do other HDACs
(Vaquero 2009; Sauve et al. 2001). Historically, sirtuins
conducted ADP-ribosylation before they performed deace-
tylation (Vaquero 2009; Saunders and Verdin 2007; Starai
et al. 2002).

The budding yeast Saccharomyces cerevisiae has only
three class 1 HDACs (Rpd3, Hos2, and Hos1) and two
class 2 HDACs (Hda1 and Hos3) but multiple class 3
HDACs (Sir2, Hst1, Hst2, Hst3, and Hst4) (Ekwall 2005).
Genome-wide expression profiles have shown that the S.
cerevisiae HDACs most consistently required for gene

Disease Reference

Chronic hemolytic anemia Manco et al. (2006)

Cystic fibrosis Chen et al. (2008)

Duchenne’s muscular dystrophy Ostertag and Kazazian (2001) and Hu et al. (1991)

Hemophilia A Ostertag and Kazazian (2001)

X-linked retinitis pigmentosa Chen et al. (2006)

Colon cancer Ostertag and Kazazian (2001) and Miki et al. (1992)

Beta-thalassemia Ostertag and Kazazian (2001)

Huntington disease Ostertag and Kazazian (2001)

Breast cancer Ostertag and Kazazian (2001) and Miki et al. (1996)

Insulin-resistant diabetes Shimada et al. (1990)

Fabry disease Kornreich et al. (1990)

Acute myelogenous leukemia Strout et al. (1998) and So et al. (1997)

Table 1 Examples of human
diseases associated with trans-
poson insertions
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regulation involving metabolism, biosynthesis and cell-
cycle regulation are Rpd3, Hda1, and Sir2 (Ekwall 2005;
Bernstein et al. 2001; Robyr et al. 2002; Robyr et al. 2004).
The formation of heterochromatin in S. cerevisiae depends
on Sir2 (Vaquero 2009). Human class 1 HDACs are closely
related to the yeast Rpd3 (Martin et al. 2009; Rundlett et al.
1996; Taunton et al. 1996), while human class 2 HDACs
are homologous to yeast Hda1 (Martin et al. 2009; Fischer
et al. 2002; Fischle et al. 2001; Fischle et al. 2002; Kao et
al. 2000; Miska et al. 1999; Guardiola and Yao 2002).
Human class 3 HDACs, SIRT1-SIRT7, are homologous to
yeast Sir2 (Vaquero 2009; Martin et al. 2007; Haigis and
Sinclair 2010; Haigis and Guarente 2006).

Human HDAC regulation and transcription regulation

HDACs are not independent. They do not choose their
deacetylation targets independently (Sengupta and Seto
2004; Martin et al. 2007; de Ruijter et al. 2003). They do
not arrive at their targets or bind DNA independently
(Sengupta and Seto 2004; Martin et al. 2007). Most are in
an inactive form when translated from mRNA and require
cofactors for activation (Sengupta and Seto 2004; de Ruijter
et al. 2003).

Human HDAC1 and its paralog HDAC2 are only
slightly divergent from each other in both sequence and
function (Gregoretti et al. 2004; de Ruijter et al. 2003). To
bind DNA and perform deacetylation activity, they must be
part of a large protein complex, either Sin3, NuRD/NRD/
Mi2, or CoREST (Sengupta and Seto 2004; Gregoretti et al.
2004; de Ruijter et al. 2003; You et al. 2001; Humphrey et
al. 2001; Zhang et al. 1998; Zhang et al. 1997; Tong et al.

1998; Ayer 1999; Ng and Bird 2000). Cofactors and co-
repressors are also required (Galasinski et al. 2002; Zhang
et al. 1999; Heinzel et al. 1997; Ashburner et al. 2001).
Both complex association and deacetylation activity are
impacted by phosphorylation of HDAC1 and/or HDAC2
(de Ruijter et al. 2003; Galasinski et al. 2002; Pflum et al.
2001; Tsai and Seto 2002).

Human HDAC3 must be activated by complexing with
silencing mediator for retinoic acid and thyroid hormone
receptors (SMRT) and nuclear receptor co-repressor (N-
CoR) (Sengupta and Seto 2004; Heinzel et al. 1997; Alland
et al. 1997; Wen et al. 2000; Guenther et al. 2001; Zhang et
al. 2002a, b; Bertos et al. 2001; Kao et al. 2000). SMRT
activation of HDAC3 also requires interaction with TCP-1
ring complex (Guenther et al. 2002) and can be affected by
interaction with HSP70 (Johnson et al. 2002). HDAC4,
HDAC5, and HDAC7 are activated due to complexing with
HDAC3/SMRT/N-CoR (Fischle et al. 2001; Fischle et al.
2002; Martin et al. 2007; Yang et al. 2002).

The N-terminal domains of class 2 HDACs 4, 5, 7, and 9
contain sites for binding or complexing with a vast number
of regulatory proteins, including DNA binding factors,
hormone receptors, protein kinases, protein phosphatases, a
methyltransferase, and regulatory complexes such as
Sin3A, SMRT, and N-CoR (Fischle et al. 2001; Fischle et
al. 2002; Kao et al. 2000; Miska et al. 1999; Martin et al.
2007; Verdel and Khochbin 1999; Wang et al. 1999; Kao et
al. 2001; Lu et al. 2000; Ghisletti et al. 2007; Zhang et al.
2002a, b; Grozinger and Schreiber 2000; Dequiedt et al.
2006; Parra et al. 2007). They are systematically trans-
ported in and out of the nucleus, where they have access to
histone substrates (Fischle et al. 2001; Miska et al. 1999;
Grozinger and Schreiber 2000; Dequiedt et al. 2006; Parra

Mechanism Requirement Class S. cerevisiae Humans

Zinc ion (Zn2+) 1 Rpd3 HDAC1

Hos2 HDAC2

Hos1 HDAC3

HDAC8

2 Hda1 HDAC4

Hos3 HDAC5

HDAC6

HDAC7

HDAC9

HDAC10

4 HDAC11

Nicotinamide adenine dinucleotide (NAD+) 3 (Sirtuins) Sir2 SIRT1–SIRT7
Hst1

Hst2

Hst3

Hst4

Table 2 HDACs in humans and
in Saccharomyces cerevisiae
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et al. 2007), and are subjected to cleavage, ubiquitination,
sumolation, and phosphorylation (Grozinger and Schreiber
2000; Dequiedt et al. 2006; Parra et al. 2007; Paroni et al.
2004; Li et al. 2004; Petrie et al. 2003). Access to DNA is
controlled in a signal-dependent manner by multiple protein
kinases, protein kinase inhibitors, and phosphatases (Martin
et al. 2007; Kao et al. 2001; Dequiedt et al. 2006; Parra et
al. 2007; McKinsey et al. 2000a; Chawla et al. 2003).
HDAC binding to the transcription factor myocyte enhanc-
er factor-2 (MEF2) is critical to the ability of the HDACs to
remain securely bound at the promoter (Miska et al. 1999;
Verdel and Khochbin 1999; Lu et al. 2000; Grozinger and
Schreiber 2000; McKinsey et al. 2000a; McKinsey et al.
2000b). Deacetylase-mediated gene regulation can be
disrupted by the calcium/calmodulin-dependent protein
kinase reversal of HDAC-MEF2 binding (McKinsey et al.
2000a; Chawla et al. 2003; McKinsey et al. 2000b). The
MEF2 transcription factor can regulate gene expression as
either a repressor or activator depending on which
epigenetic modulators, histone acetyltransferases (HATs)
or HDACs, are recruited and bound (Lu et al. 2000;
McKinsey et al. 2001; Youn et al. 2000).

Of the human class 3 HDACs (sirtuins), only SIRT1-
SIRT3 and SIRT6 preferentially deacetylate histones as
opposed to deacetylation of non-histone proteins or ADP-
ribosylation (Vaquero 2009; Saunders and Verdin 2007, 72;
Vaquero et al. 2004).

SIRT1 has essential roles in chromatin regulation,
metabolism, differentiation and cellular response to stress
conditions (Vaquero 2009; Yamamoto et al. 2007). In its
central role of heterochromatin formation, SIRT1 interacts
with a variety of proteins and protein complexes, including
those required for DNA binding and including the histone
H1, which it both recruits to the nucleosome and
deacetylates (Vaquero 2009; Vaquero et al. 2004; Hansen
2002; Kuzmichev et al. 2004), thereby leading to H1K26
methylation by methyltransferase EZH2 (Kuzmichev et al.
2004) and to HP1 binding (Daujat et al. 2005). SIRT1
implements methylation of H3K9 by H3K9 deacetylation
and the recruitment, binding, and deacetylation of the
methyltransferase SUV39H1 (Vaquero 2009; Vaquero et al.
2007).

Among the most important functions of SIRT1 is stress-
induced DNA repair, in which its protein–protein inter-
actions coordinate multiple responses (Haigis and Guarente
2006; Giannakou and Partridge 2004), including cell-cycle
arrest and detoxification as well as DNA repair and cellular
repair (Vaquero 2009; Brunet et al. 2004; Motta et al. 2004;
van der Horst et al. 2004; Yamamori et al. 2010; Yeung et
al. 2004; Yuan et al. 2007; O’Hagan et al. 2008; Sasaki et
al. 2006; Lee et al. 2008). SIRT1 activates DNA base
excision repair by reversing stress-induced hyperacetylation
of apurinic/apyrimidinic endonuclease-1 (Yamamori et al.

2010). SIRT1 also joins the MRE11-RAD50-NBS1 com-
plex and facilitates DNA double-strand break repair by
accommodating NSB1 phosphorylation by first reversing
acetylation of the same serine 343 residue (Yuan et al.
2007).

As described by Sengupta and Seto (2004), the regula-
tion of HDACs amounts to the regulation of the proteins
that regulate the HDACs, and a small portion of that
regulation has been described here. Extra levels of
regulation include sequestration, HDAC expression levels,
alternative splicing, cofactor levels and proteolytic activa-
tion or inactivation (Miska et al. 1999; Kao et al. 2001;
Lagger et al. 2002; Dangond et al. 1998; Gray et al. 2003;
Lin et al. 2004; Anderson et al. 2003; Wiper-Bergeron et al.
2003).

Regulation of the expression of a gene (or provirus,
transposon, or endogenous retrovirus) depends on DNA
regulatory sequences within its promoter or extended
regulatory region, on environmental input and on the
availability of all transcription factors and other regulatory
proteins and all components of all associated multi-unit
complexes, including epigenetic modulators and their
cofactors (Sengupta and Seto 2004; Wray et al. 2003; Tuch
et al. 2008; Balmer and Blomhoff 2009).

Wray et al. (2003) summarized the patterns of gene
functions that forecast the evolution of either simple or
complex transcription regulation. Accordingly, simple
patterns of regulation may be expected for genes that are
either constitutively expressed or expressed only in one
differentiated cell type, while complex regulation may be
expected for genes which are expressed in early stages of
development, which produce more than one unique product
or which are directly responsive to environmental and/or
multiple input (Wray et al. 2003). Complex regulation may
be characterized by combinations of both positive and
negative regulatory mechanisms, combinations of both
positive and negative feedback loops, redundancy and
competition in binding between factors with contrasting
effects (Wray et al. 2003; Liu et al. 2004; Casillas et al.
2003).

The described relationships between gene functions and
regulation complexity can work in both directions. Com-
plexity can presumably identify genes whose regulation
evolved to accommodate contrasting functions and there-
fore has likely undergone evolutionary compromises (Nesse
and Williams 1995; Wray et al. 2003).

A classic example of a gene with complex regulation is
hTERT. Liu et al. (2004) described as many as ten
repressors and five activators of hTERT, with the binding
of each transcription factor dependent on local chromatin
modifications. Competing requirements that hTERT regula-
tion was required to accommodate include embryonic
development, differentiation, proliferation of germ-line
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cells, rapid proliferation of lymphocytes and other cells of
immune function following infection, rapid replacement of
hematopoietic cells following blood loss, tissue repair and
prevention of the unrestrained cell proliferation that
sustains cancer (McArthur et al. 2002; Cunningham et al.
2006; Henderson et al. 2000). The transcription factor
MAD1 must recruit the entire Sin3A-HDAC complex in
order to repress transcription (Chou et al. 2009; Hassig et
al. 1997). MAD1 transcriptional repression is essential for
the prevention of unrestrained expression of hTERT (Chou
et al. 2009; Casillas et al. 2003; Liu et al. 2004; McArthur
et al. 2002; Zhu et al. 2008; Lai et al. 2007), upon which at
least 95% of human cancer cells depend for immortalization
(Berletch et al. 2008; Perrault et al. 2005; Cong and Shay
2008). The activator c-MYC competes with MAD1 for the
same binding sites of the hTERT regulatory region (Liu et
al. 2004; Casillas et al. 2003).

HDAC limitations

While HDACs participate in defense against virtually the
full range of human disease, their response for many
diseases is inadequate because of evolutionary compro-
mises (Nesse and Williams 1995; Wray et al. 2003). A
specific level of expression of a gene such as hTERT may
be protective against one disease and generate another (Lai
et al. 2007; McArthur et al. 2002; Henderson et al. 2000).
Natural selection does not design defense against diseases
that materialize only subsequent to the age of reproduction
(Nesse and Williams 1995; Wick et al. 2003; Wick et al.
2000). While cancer and heart disease can occur before or
during child-bearing years, they most often present at a
more advanced age. Their defense mechanisms, therefore,
are insufficiently subjected to evolutionary pressure and are
disproportionately available for evolutionary compromise
(Nesse and Williams 1995; Wick et al. 2003; Wick et al.
2000). If disease defenses are flawed by evolutionary
compromises with other requirements of the organism, they
are more flawed when a promoter, enhancer, and coding
sequences are donated by an integrated provirus or
transposon. The donated sequences have been shaped by
evolution for the benefit of the virus or transposon more
than the benefit of the host (Katz et al. 2007; Lewin 2008;
Cohen et al. 2009). The donated DNA brings not just a
compromise but a conflict of interest.

HDAC-mediated repression of HIV provirus is unsuc-
cessful. C-promoter binding factor-1 (CBF-1) is an effec-
tive transcription repressor which binds to the enhancer
region of the HIV-1 provirus LTR shortly after integration
and recruits HDAC1 to silence transcription (Tyagi and
Karn 2007; Colin and Van Lint 2009). Its binding site
overlaps that of the activator nuclear factor kappa-light-

chain-enhancer of activated B cells) (NF-κB) which, if
present, is able to replace CBF-1 at the HIV-1 LTR (Tyagi
and Karn 2007). CBF-1 is also an effective transcription
repressor at the promoter of nuclear factor of kappa-light
polypeptide gene enhancer in B cells inhibitor, alpha
(IκBα), which inhibits NF-κB by sequestration outside
the nucleus (Oakley et al. 2003). CBF-1, thereby, provides
negative feedback to its own suppression of HIV-1
transcription. As with other HDAC repression of provirus
transcription, CBF-1 mediated repression is neither total nor
permanent but only ensures continuation of infection which
is both contagious and presumably fatal (Colin and Van
Lint 2009).

Although the transcription factors Sp1 and NF-κB, in p50/
p65 heterodimer form, are indispensable to HIV-1 transcrip-
tion, the p50/p50 homodimer form of NF-κB, present in T
cells before activation, recruits HDAC1 (Colin and Van Lint
2009; Perkins et al. 1993; Williams et al. 2006; Zhong et al.
2002). HDAC1 is also recruited to the HIV-1 LTR by YY1
and activating protein-4 (AP-4) (He and Margolis 2002; Imai
and Okamoto 2006). Sp1, with or without COUP-TF
interacting protein 2 as cofactor, recruits both HDAC1 and
HDAC2 (Colin and Van Lint 2009; Marban et al. 2007).

Studies have shown that oxidative stress inhibits HDAC
activity, activates NF-κB and activates HIV LTR transcription
(Rahman et al. 2004; Pyo et al. 2008; Oliveira-Marques et al.
2009; Legrand-Poels et al. 1990). Oxidative stress related to
hydrogen peroxide (H2O2) and/or other reactive oxygen
species activates IκB kinase, which phosphorylates IκBα at
two serine residues, marking IκBα for ubiquitin-mediated
proteolysis and releasing the active heterodimeric form of
NF-κB from cytoplasmic sequestration (Zhong et al. 2002;
Rahman et al. 2004; Pyo et al. 2008; Kamata et al. 2002).
Destruction of IκBα also activates protein kinase A, which
phosphorylates serine 276 of the p65 component of hetero-
dimeric NF-κB (Zhong et al. 2002; Pyo et al. 2008; Zhong et
al. 1998). The active heterodimeric NF-κB, with phosphor-
ylated p65, relocates to the nucleus and recruits HATs such
as p300 and CREB-binding protein (Colin and Van Lint
2009; Zhong et al. 2002; Rahman et al. 2004; Zhong et al.
1998; Gerritsen et al. 1997). The repressive homodimer with
HDAC1 activity is displaced and HIV transcription is
accommodated (Lusic et al. 2003; Thierry et al. 2004; Calao
et al. 2008).

Not only can HDAC-initiated repression of an integrated
retrovirus be reversed by environmental influences, epige-
netic repression of mere remnants of retrovirus integration
into ancestral germ-line DNA thousands of generations ago
can also be reversed by similar environmental influences to
apparently cause disease conditions (Colmegna and Garry
2006).

Autoimmune reactions often appear to be in response to
stress-exposed endogenous retrovirus DNA or to the
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products coded by such DNA (Colmegna and Garry 2006;
Blank et al. 2009; Balada et al. 2009). While endogenous
retroviruses contain numerous mutations accumulated dur-
ing their long history, some contain unaltered or unaffected
genes that may be expressed when epigenetic silencing is
interrupted (Colmegna and Garry 2006; Balada et al. 2009).
Interruption can result from oxidative and nitrosative stress,
ultraviolet radiation, extreme temperature, psychological
stress, infections, and hormones and other chemicals (Blank
et al. 2009; Balada et al. 2009; Hohenadl et al. 1999; Csoka
and Szyf 2009; Wang et al. 2010; Zeh et al. 2009).

Antibodies against retrovirus proteins have been found
in the serum of autoimmune patients with no history of
viral infection (Colmegna and Garry 2006; Blank et al.
2009; Balada et al. 2009). Phospholipid cross-reacting anti-
viral antibodies and antigens homologous to viral antigens
have been found in patients with systemic lupus erythema-
tosus (SLE) (Colmegna and Garry 2006; Blank et al. 2009;
Balada et al. 2009). SLE is a unique systemic autoimmune
disease with autoantibodies directed against so many organs
and tissues that they might as well be directed against a
patient’s DNA. Sherer et al. (2004) reported SLE autoanti-
bodies with 116 different specificities. Identified specific-
ities such as nucleosomes, double-stranded DNA, single-
stranded DNA, telomeres, histones, nucleosides, and
multiple proteins involved in genome maintenance support
the characterization of an immune system in rebellion
against its DNA (Sherer et al. 2004).

An endogenous retrovirus associated with SLE is located
at 1q42 on human chromosome 1 (Pullmann et al. 2008). A
study using SLE patients and control groups established
haplotypes at 1q42 based on single-nucleotide polymor-
phisms (Pullmann et al. 2008). The lupus patients were
significantly associated with the same haplotype (Pullmann
et al. 2008).

Antibodies against endogenous retrovirus antigens are
recovered from cerebral spinal fluid of multiple sclerosis
patients (Christensen 2005), while Gag (retroviral structural
protein) antigens exclusively of retrotransposon and retro-
virus origin are found abnormally in brain neurons of
multiple sclerosis patients (Dolei and Perron 2009; Balada
et al. 2009). Proteins present in salivary gland tissues of
persons with Sjögren’s syndrome have reacted with anti-
bodies directed against HIV-1 proteins (Yamano et al. 1997)
or HTLV-1 proteins (Terada et al. 1994). T lymphocytes
with T cell receptors reactive to endogenous retroviral
HERV-K18 superantigen have been found in the pancreas
of persons with type 1 diabetes, with haplotype association
(Marguerat et al. 2004; Balada et al. 2009).

With the endogenous retrovirus HERV-K18 super-
antigen, Meylan et al. (2005) demonstrated that immune
tolerance to antigens of endogenous retroviral origin can
be established provided that antigens are sufficiently

available for the required presentation for central tolerance
and/or peripheral tolerance. It would appear that HDAC-
mediated repression of an endogenous retrovirus may
interfere with the development of immune tolerance, while
environmental disruption of epigenetic repression
unleashes an intolerant immune reaction that is self-
reactive (Meylan et al. 2005; Siggs et al. 2006; Balada et
al. 2009) The problem would seem to lie, at least in part,
in the evolutionary derived transient nature of HDAC-
mediated repression. The superantigen coded by HERV-
K18 induces a response by T cells known to be reactive or
cross-reactive against human beta cells in type 1 diabetes
(Meylan et al. 2005; Marguerat et al. 2004; Conrad et al.
1997; Stauffer et al. 2001; Balada et al. 2009). Other
endogenous retrovirus antigens with expression associated
with autoimmune reactions are subject to similar transient
HDAC-mediated transcription repression (Balada et al.
2009, 2010). Increased populations of CD4 T cells
reactive to the HERV-K18 superantigen and to other
endogenous retroviral antigens have been associated with
environmental interventions known to disrupt HDAC
suppression of transcription (Balada et al. 2009; Stauffer
et al. 2001).

Exogenous chemicals that disrupt epigenetic regulation
include heavy metals, cyclic hydrocarbons, pesticides and
pharmaceutical products introduced for health benefits
(Weinhold 2006; Csoka and Szyf 2009). Table 3 lists some
pharmaceutical products and their reported epigenetic
effects.

Is it realistic to contemplate strategies to overcome
HDAC limitations? One approach to elimination of latent
HIV infection suggests possibilities.

If HDAC-mediated transcription silencing is too vulner-
able to disruption to provide defense against a transcription-
dependent disease as deadly and resilient as that from HIV
infection, perhaps the opposite approach might provide
protection (Dahl et al. 2010; Demonte et al. 2004; Bowman
et al. 2009). Activation of transcription of HIV-1 provirus
by treatment of latently infected cells with HDAC inhibitors
has been demonstrated (Demonte et al. 2004; VanLint et al.
1996). Latently infected cells escape detection by surveil-
lance of the immune system and are little affected by drugs
that purge extra-cellular virus (Dahl et al. 2010; Demonte et
al. 2004; Bowman et al. 2009; Keedy et al. 2009). By
inducing expression of latent provirus, HDAC inhibitors
could bring about the expression of viral antigens that
expose infected cells to elimination by T lymphocytes,
while escaping virions could be eliminated by antibodies
and anti-viral drugs (Demonte et al. 2004; Bowman et al.
2009). As with defense mediated by HDACs, defense
mediated by HDAC inhibitors must eliminate all potential
re-emergence of latent but deadly virus (Bowman et al.
2009). HDAC inhibitors, some with anti-cancer properties
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(Marks and Xu 2009; Minucci and Pelicci 2006), belong to
multiple families (Marks and Xu 2009; Minucci and Pelicci
2006) and target all four classes of HDACs with different
specificities (Khan et al. 2008; Bolden et al. 2006). Only
inhibition of class 1 HDACs is required for activation of
HIV-1 transcription, and a more global inhibition of
HDACs appears to present unintended consequences (Colin
and Van Lint 2009; Keedy et al. 2009; Archin et al. 2009;
Bolden et al. 2006; Caron et al. 2005; Dokmanovic et al.
2007; Glozak et al. 2005).

In human HeLa cells experimentally infected with the
ASV retrovirus, Katz et al. (2007) tested a variety of
histone deacetylase inhibitors, as well as other activators
including the promising phorbol ester prostratin (Kulkosky
et al. 2001; Biancotto et al. 2004; Korin et al. 2002), for
their ability to reverse silencing by HDACs. A significant
level of reactivation was indicated by the reporter gene for
several activators and especially for the HDAC inhibitor
trichostatin A (Katz et al. 2007). At no point in any
experiment with any activator was the percent of cells in
activated status a substantial majority (Katz et al. 2007).
The study concluded that a mechanism was present that
rendered regulatory access to HDAC inhibitors and other
activators transient (Katz et al. 2007).

Reuse et al. (2009) demonstrated far more significant
benefits in provirus activation from synergy attained
through the combined treatment of HIV-infected cells
with both prostratin and HDAC inhibitors. Effective
combinations involved valproic acid, sodium butyrate or
suberoylanilide hydroxamic acid (SAHA) as the HDAC
inhibitors (Reuse et al. 2009). Burnett et al. (2010)
exhibited the benefits of treatment with SAHA in
combination with prostratin. The merits of a synergistic
approach to altered transcription regulation, even involv-
ing HIV, have been demonstrated (Katz et al. 2007; Reuse
et al. 2009; Burnett et al. 2010) and provide evidence that
a synergistic approach to compensate for the limitations of
epigenetic modulation is realistic. The same has been
demonstrated by synergistic reactivation of estrogen
receptor-α (ERα) in ERα-negative breast cancer cells
(Li et al. 2010).

Conclusions

After 100 Ma of evolution in eukaryotes, early adaptation
for defense and the development of highly sophisticated
regulation, HDACs remain ineffective as defense against
some of the most lethal human diseases, due to evolution-
ary compromises (Ekwall 2005; Heckman et al. 2001;
Feschotte 2008; Sengupta and Seto 2004; Colin and Van
Lint 2009; Miki et al. 1996). The complex gene regulation,
developed with the molecular domestication of new
regulatory sequences, provides that the contributions of
components with contrasting outcomes, such as HDACs
and HATs, may be complementary rather than mutually
exclusive and is adequate and appropriate for most disease
conditions (Jordan et al. 2003; Bourque et al. 2008;
Kapitonov and Jurka 2005; Feschotte 2008; Zeh et al.
2009; Goodier and Kazazian 2008; Nakamura and Cech
1998; Wray et al. 2003; Sengupta and Seto 2004; Gregoretti
et al. 2004; Tuch et al. 2008; Balmer and Blomhoff 2009).
Most disease conditions we are, in fact, unaware of because
our evolved regulatory network prevents their occurrence
(Liu et al. 2008; Latham and Dent 2007; Sengupta and Seto
2004; Goodier and Kazazian 2008; Hildmann et al. 2007;
Feschotte 2008; Slotkin and Martienssen 2007).

For exceptional diseases, including those generated by
some oncogenes or by a virus as virulent as HIV, only total
and permanent transcription elimination is protective (Colin
and Van Lint 2009). For such diseases, a single therapeutic
agent appears unlikely to overcome the consequences of
compromise, and evolution does not appear likely to escape
compromise (Nesse and Williams 1995; Fromer and Shif-
man 2009; Foit et al. 2009; Li et al. 2010). It appears that
we may need to more effectively address the challenges of
evolved gene regulation complexity (Wray et al. 2003). In
molecular terms, we may need to better address multiple
components of protein–protein interactions and pathway
interactions, including perhaps interactions that constitute
negative feedback (Katz et al. 2007; Oakley et al. 2003;
Chou et al. 2009; Feschotte 2008; McArthur et al. 2002;
Sengupta and Seto 2004; Wray et al. 2003; Colin and Van
Lint 2009).

Chemical Reported epigenetic effect

Valproic acid Histone deacetylase inhibition (Phiel et al. 2001)

5-Fluro-2′-deoxyuridine DNA hypermethylation (Nyce et al. 1993)

Hydralazine Inhibition of DNA methylation (Gorelik and Richardson 2009)

Procainamide Inhibition of DNA methylation (Gorelik and Richardson 2009)

Retinoic acid Reduction of DNA methylation (Kuriyama et al. 2008)

Methotrexate Reduction of DNA methylation (Toffoli et al. 2003; Friso et al. 2002)

Suberoylanilide hydroxamic acid Histone deacetylase inhibition (Duvic and Vu 2007)

Sodium butyrate Histone deacetylase inhibition (Reuse et al. 2009)

Table 3 Pharmaceutical epige-
netic effects
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Evidence has been presented (Goodier and Kazazian
2008; Zeh et al. 2009; Feschotte 2008; Bannert and Kurth
2004; Slotkin and Martienssen 2007) that even a patholog-
ical exposure of a transposition-competent exogenous or
endogenous retrovirus may provide a net benefit to the
species because of potential benefits from domestication
and recombination. When reactivation is uniformly lethal, a
net benefit seems unlikely.
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