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Abstract Epigenetic marks are well recognized as heritable
chemical modifications of DNA and chromatin that induce
chromatin structural changes thereby affecting gene activ-
ity. A lesser-known phenomenon is the pervasive effects
these marks have on genomic integrity. Remarkably,
epigenetic marks and the enzymes that establish them are
involved in multiple aspects of maintaining genetic content.
These aspects include preserving nucleotide sequences such
as repetitive elements, preventing DNA damage, function-
ing in DNA repair mechanisms and chromatin restoration,
and defining chromosomal organization through effects on
structural elements such as the centromere. This review
discusses these functional aspects of epigenetic marks and
their effects on human health and disease.
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Epigenetics is broadly defined as the heritable, regulatory
elements of a genome exclusive of its primary DNA
sequence. Methylation of DNA and post-translational
modifications of the core histone proteins are the most
well understood epigenetic marks. Together, they organize
DNA into chromatin and ensure proper gene regulation.
Additionally, epigenetic regulation of eukaryotic genomes has
been increasingly shown to impart stability on the DNA
sequence and to aid in maintenance of genomic integrity.
Epigenetic aberrations causing genetic instability are at the

root of developmental abnormalities such as ICF (immuno-
deficiency, centromere instability, and facial anomalies)
syndrome, which is characterized by immune defects,
heterochromatin instability, and mental retardation, and
disease states such as cancer. This review discusses the
fundamentals of epigenetics and presents its many roles in
maintaining genome stability.

DNA methylation as an epigenetic mark

To regulate genetic information, a cell"s immense quantity
of DNA must be systematically packaged and organized, a
function provided by chromatin structure. Chromatin can be
distinguished as heterochromatin, characterized as a highly
condensed and transcriptionally inert state, or as euchro-
matin, a loosely packaged DNA arrangement easily
accessible by transcription factors and the transcription
machinery. These states are largely determined by covalent
modifications of the histone proteins contained within
chromatin and by DNA methylation.

DNA methylation is a covalent modification of DNA that,
in vertebrates, predominantly occurs at the carbon-5 position
of cytosine nucleotides followed by a guanine (CpG). Patterns
of DNA methylation are strongly associated with transcrip-
tional repression and are localized to domains of heterochro-
matin (Miller et al. 1974). On a global level, in differentiated
somatic cells, CpG dinucleotides are methylated at about
80%, whereas CpG islands, which contain longer stretches of
CpG-containing sequence and are typically associated with
gene promoters, often remain unmethylated, presumably to
permit gene activation (Bird 1999, 1986; Gardiner-Garden
and Frommer 1987; Jaenisch and Bird 2003).

The cell"s DNA methylation “signature” provides ex-
plicit instructions for directing functions such as maintain-
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ing pluripotency or promoting tissue-specific gene expression
and controlling growth and proliferation. Establishment of
proper DNA methylation patterns and maintenance of those
patterns through mitotic division is critical for cellular
function. During mammalian development soon after
fertilization, gene expression profiles are “reset” by a
wave of widespread DNA demethylation, especially of
the paternal genome (Jaenisch and Bird 2003; Mayer et
al. 2000; Oswald et al. 2000). Subsequently, genome-wide
de novo methylation commences following implantation
of the zygote. The DNA methyltransferases (DNMT)
DNMT1, DNMT3A, DNMT3B, and DNMT3L actively
contribute to and determine these DNA methylation
patterns in mammalian cells by differential means.
DNMT1 has a strong bias for hemi-methylated DNA and
localizes to DNA replication foci; these features are
consistent with DNMT1 playing a major role in maintenance
of methylation in dividing cells (Bestor 1992; Leonhardt et al.
1992). DNMT3A and DNMT3B, on the other hand, operate
equally well on unmethylated or hemi-methylated DNA
substrates and thus are classified as possessing de novo
methylation activity (Liang et al. 2002; Okano et al. 1999;
Yokochi and Robertson 2002). Their activity is enhanced by
DNMT3L, a catalytically inactive protein with sequence
similarity to DNMT3A and DNMT3B (Chedin et al. 2002;
Hata et al. 2002; Jia et al. 2007; Margot et al. 2003; Suetake
et al. 2004). Both de novo and maintenance methylation are
required for development, since deficiency for any of the
DNMTs affects viability (Okano et al. 1999). DNA
methylation marks are interpreted by methyl-CpG-binding
proteins including MBD1, MBD2, MBD3, and MeCP2,
which generally act to silence gene expression and recruit
histone deacetylases (HDACs), which are required for
chromatin condensation (Bowen et al. 2004; Boyes and
Bird 1991; Jaenisch and Bird 2003; Lewis et al. 1992;
Meehan et al. 1989; Nan et al. 1997). Thus, DNA
methylation and the proteins associated with writing
(DNMTs) and reading (MBDs) this mark provide a robust
mechanism for regulation of transcriptional activity, but
more importantly, the stability of DNA methylation as a
covalent modification and the replicable nature of DNA
methylation marks facilitate the inheritance of epigenetic
information during important processes such as X chromo-
some inactivation, imprinting, silencing of repetitive ele-
ments, transposable elements, and pericentromeric repeats,
and developmental gene regulation (Gopalakrishnan et al.
2008; Li 2002; Slotkin and Martienssen 2007).

The key question regarding DNA methylation is what
factors or stimuli determine how methylation patterns are
established. Studies in Arabidopsis show that positioning
of nucleosomes along DNA is directly related to the
patterning of DNA methylation: nucleosome-bound DNA
is enriched for methylation compared to nucleosome-

flanking sequences (Chodavarapu et al. 2010). Likewise,
the histones comprising the nucleosome core bear post-
translational modifications involved in directing DNA
methylation patterns, chromatin restructuring, and tran-
scriptional effects (Hu et al. 2009; Ooi et al. 2009, 2007;
Zhang et al. 2010).

Histone modifications in chromatin function

The basic repeating unit of chromatin is the nucleosome,
containing an octamer of four core histones, H2A, H2B,
H3, and H4, around which double-stranded DNA is
coiled. Each histone consists mostly of a globular
domain except for an N-terminal tail, which protrudes
from the nucleosome where it is accessible for binding to
DNA, for protein interactions, and for covalent attach-
ment of small molecules. Covalent modifications of
amino acid residues in histones direct DNA methylation,
chromatin conformation, and gene transcription by
promoting or restricting the recruitment of gene regula-
tory proteins (Jenuwein and Allis 2001). The most well
understood histone modifications include methylation,
phosphorylation, acetylation, and ubiquitination, and
chromatin regulation is conferred by the combination of
these modifications on different residues and, in the case
of histone methylation, by the number of moieties attached
to a specific residue (Kouzarides 2007). Methylation of
histone H3 lysine 9 (H3K9), H3K27, H4K20, and H3
arginine 2 (R2) are just a few of the marks determining
heterochromatin formation and transcriptional repression
(Kirmizis et al. 2007; Kouzarides 2007). Euchromatin is
characterized by methylation of H3K4 and acetylation of
H3 and H4 histone tails. For histone methylation, the
number of attached methyl groups also influences its role
as a regulatory mark. Lysines and arginines are mono-, di-,
or trimethylated. Di- and trimethylation of H3K4
(H3K4me2 and H3K4me3), for example, is strongly
associated with regions of transcriptional permissiveness,
and hypomethylation of this residue is correlated with loss
of H3K9 acetylation (Bernstein et al. 2002; Santos-Rosa et
al. 2002; Schneider et al. 2004). While H3K9me3,
H3K27me3, and H4K20me3 are all heterochromatic
marks, mono-methylation of these same residues corre-
lates with transcriptional permissiveness. Additionally,
some histone marks show specificity for certain gene
regions. Transcriptionally active genes are characterized
by H3K4me2 within their coding regions, while histone
acetylation and H3K4me3 are enriched in promoter
regions, and H3K4me1 occurs in enhancer elements
(Bernstein et al. 2002; Heintzman et al. 2007; Liang et
al. 2004; Schneider et al. 2004). H3R2me2, which is
mutually exclusive with H3K4me3, is found within
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transcriptionally inactive genes and in the 3′ region of
transcribed genes (Kirmizis et al. 2007).

A collection of histone-modifying enzymes including
lysine methyltransferases, arginine methyltransferases,
serine-threonine kinases, and acetyltransferases is involved
in writing each mark. These enzymes prove to be highly
specific in recognizing a single amino acid substrate, and
multiple enzymes provide functional redundancy for writing
each mark and/or the ability of particular marks to respond to
many different stimuli (Kouzarides 2007). For instance, the
SET domain methyltransferases SUV39H1, SUV39H2, G9,
and SETDB1, among others, show strict specificity for
methylating H3K9. Likewise, mixed lineage leukemia
enzymes 1–5 specifically recognize and methylate only
H3K4 residues (Kouzarides 2007).

The combinations of these modifications at specific loci
are highly dynamic and capable of rapid change depending
on a cell"s response to cell–cell signaling and environmental
cues. For instance, pluripotent cells possess a state of
“bivalency” in which H3K27 methylation, a mark of
heterochromatin, overlaps with loci containing euchromatic
H3K4 methylation (Azuara et al. 2006; Bernstein et al.
2006; Ku et al. 2008). These opposing marks occupy genes
encoding many developmentally important transcription
factors that were presumably “poised” for either activation
or dense repression by stabilization of one of these marks
upon differentiation. Thus, some have questioned whether
histone modifications should be referred to as epigenetic
marks under a strict classical definition of a stable element,
faithfully inherited throughout many cell generations
(Kouzarides 2007). Recent evidence has shown that at least
some histone marks are indeed preserved and replicated
during cell division. The repressive mark H3K27me3 is
maintained during DNA replication by binding of the
polycomb repressive complex 2 to H3K27me3 within
promoters of transcriptionally repressed genes (Hansen et al.
2008). Identifying additional mechanisms that allow for the
reproduction of histone modifications within the chromatin
of newly synthesized DNA will be important for under-
standing how gene expression programs are controlled.
Regardless of their heritability, these modifications provide
important information crucial for genomic stability and
proper DNA methylation; so, for the purpose of this review,
we continue to refer to them as epigenetic marks.

As previously mentioned, histone modifications are
important in establishing DNA methylation marks. Repres-
sive histone marks may be established independently of DNA
methylation and are capable, in some cases, of inducing de
novo DNA methylation. DNMT3L recognizes loci lacking
unmethylated H3K4, and an interaction between DNMT3L
and the most N-terminal residues of histone H3 is required for
de novo DNA methylation (Hu et al. 2009; Ooi et al. 2007).
Furthermore, DNMT3A and DNMT3B interact with

SUV39H1 and EZH2, which are H3K9 and H3K27 histone
methyltransferases, respectively, as well as residues 1–19 in
the N-terminal tail of histone H3 (Lehnertz et al. 2003; Vire
et al. 2006; Zhang et al. 2010). Conversely, DNA methyl-
ation may also direct establishment of repressive histone
marks. In ICF cells deficient for DNMT3B function, loci
affected by loss of DNA methylation also demonstrated a
loss of repressive H3K27 methylation marks and a coordi-
nated gain of H3K9 acetylation and H3K4 trimethylation
(Jin et al. 2008).

Epigenetics and genomic stability

Originally, DNA methylation may have been evolutionarily
acquired to defend against genomic disruption by parasitic
insertional element translocations in eukaryotic genomes,
an idea that has become widely supported (Robertson and
Wolffe 2000; Slotkin and Martienssen 2007; Yoder et al.
1997). Subsequently, functionality for DNA methylation in
other modes of genomic stability may have been co-opted
(Colot and Rossignol 1999). In the following sections, we
focus on the evidence that epigenetic mechanisms help to
preserve genomic content.

Effects of epigenetic marks on microsatellite repeat
stability

DNA methylation and DNA methyltransferases have been
implicated in affecting stability of microsatellites within the
genome for some time. Microsatellite loci are repetitive
sequences typically consisting of one to four nucleotide
repeats, and they are particularly susceptible to length
change mutations. Microsatellite repeat instability (MSI)
presents a notable hazard in light of its involvement in
diseases such as Huntington"s, myotonic dystrophy, and
cancer among others (see below) and is often associated
with defects in the mismatch repair (MMR) machinery, a
system that specifically recognizes and repairs errors in
nucleotide base pairing.

Repetitive regions are subject to expansion or contraction
when single-stranded DNA becomes exposed, allowing
repetitive sequences to form secondary structures (i.e., DNA
hairpins), particularly during replication, transcription, and
DNA repair (Pearson et al. 2005). These secondary structures
may then become incorrectly resolved through MMR or
cause slippage of DNA polymerases along repetitive
sequence during replication. For a history of MSI discovery
and characterization, see Laghi et al. (2008).

Epigenetic mechanisms appear to protect against MSI
both directly and indirectly (Table 1). Disruption of DNA
methylation or the DNMTs destabilizes repeats through a
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direct local chromatin remodeling effect, such as transcriptional
de-repression, or possibly another unknown mechanism.
Alternately, DNA methylation affects repeat stability second-
arily by producing global changes in gene expression that alter
expression of proteins responsible for repeat stabilization (i.e.,
MMR genes). Here, we discuss the evidence for these
epigenetic effects on MSI and their potential mechanisms.

Several groups have shown that MSI results from
disruption of DNMT1 or of DNA methylation patterns.
Most notably, DNMT1 mutants were isolated from an
insertional mutagenesis screen for ES cell clones exhibiting
defects in MMR (Guo et al. 2004). To measure MSI in
these mutants, a “slippage” assay was employed in which
an insertional construct containing repetitive sequence was
monitored for gain or loss of nucleotides. DNMT1 mutants
showed a higher rate of MSI compared to wild-type cells
(Guo et al. 2004). Since expression of MMR components
was unaltered, the consequences of DNMT1 deficiency
appeared to be direct rather than an indirect consequence of
genomic hypomethylation or global changes in gene
activity (Guo et al. 2004). In several independent studies,
similar roles for DNMT1 were also reported (Gorbunova et
al. 2004; Kim et al. 2004; Wang and James Shen 2004). In
these reports, DNMT1 deficiency resulted in a significant
increase in MSI for both endogenous microsatellite loci
(Wang and James Shen 2004) and transgenic slippage
reporter constructs (Kim et al. 2004). In a genetic selection
assay for trinucleotide repeat contractions, the DNA
methyltransferase inhibiting drugs 5-aza-2′-deoxycytidine
(5-azadC) and hydralazine further corroborated these find-
ings—treatment with 5-azadC produced a 1,000-fold
increase in the rate of MSI (Gorbunova et al. 2004).
Although this selection assay was biased for the identification
of contraction mutants, additional experiments utilizing
human fibroblasts derived from myotonic dystrophy patients
also showed large expansions of repeat tracts in response to 5-
azadC treatment. These differing results hint at an underlying
complexity in the involvement of DNMT1 in MSI.

One suggestion for the influence of DNMT1 on MSI is
that microsatellite methylation provides a mechanism for

length stabilization by subsequent transcriptional repression
of genes containing or proximal to microsatellites with
methylated CpG repeats (Table 1). Transcription near or
through microsatellites exposes single-stranded DNA to
secondary structure formation that may be erroneously
resolved through MMR (Lin et al. 2006; Lin and Wilson
2007). DNA methylation may stabilize these sequences by
preventing them from being transcribed. In each of the
above-mentioned analyses for MSI, non-CpG-containing
repeat sequences were examined, thus DNA hypomethyla-
tion of the repetitive sequence itself is likely not the cause
of MSI (Gorbunova et al. 2004; Kim et al. 2004; Wang et
al. 2004). Furthermore, in one study, methylation levels of
flanking DNA, which may also assist in stabilizing repeat
sequences, did not differ between wild type and DNMT1
mutant cells (Kim et al. 2004). In other analyses, however,
CpG content was implicated in MSI. For CpG-containing
human repeat sequences transfected into primate cells,
DNA methylation stabilized CGG repeats during replica-
tion in instances where DNA was premethylated prior to
transfection (Nichol Edamura et al. 2005). CpG methylation
of these microsatellites significantly decreased the frequen-
cy of length change events and the magnitude of those
changes (Nichol Edamura et al. 2005). CpG methylation of
regions adjacent to microsatellites also contributed to repeat
stabilization (Brock et al. 1999; Nichol and Pearson 2002).
In one analysis which examined ten independent CAG-
repeat-containing (non-CpG-containing) endogenous loci,
differences in instability among the loci were noted (Brock
et al. 1999). These differences were independent of micro-
satellite length but were correlated with flanking CpG
content (Brock et al. 1999). Thus, in some cases, CpG
content of microsatellites or neighboring cis-sequence does
appear to play a role in stabilizing repeat length.

DNMT1 also influences transcriptional repression and
MSI through chromatin remodeling (Table 1). Following
DNA replication, DNMT1 mediates transcriptional repres-
sion and chromatin condensation through the histone
deacetylases HDAC1 and HDAC2 (Fuks et al. 2000;
Robertson et al. 2000; Rountree et al. 2000). Enhanced

Influence on repetitive
elements

Epigenetic involvement Molecular consequence

Direct Transcriptional repression of
repetitive elements by DNA
methylation

Prevents DNA damage produced by
DNA secondary structures or
homologous recombination

Chromatin remodeling by
DNMTs

Chromatin condensation reduces DNA
exposure to mutagenic factors or
processes

Involvement of DNMTs in
DNA repair

DNMT1 interaction with the MMR
machinery facilitates DNA repair

Indirect Hypermethylation of DNA
repair genes (i.e., MMR)

Reduced expression of genes required
for genetic stability

Table 1 Epigenetic
mechanisms of genetic
instability
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trinucleotide repeat slippage in DNMT1 mutants was
correlated with an increase in H3 acetylation at the repeat,
a mark of transcriptional permissiveness (Kim et al. 2004),
and in a Drosophila model of repeat instability; reduced
activity of the histone acetyltransferase CREB-binding
protein (CBP) was responsible for CAG repeat expansion
(Jung and Bonini 2007). Histone acetylation, however,
cannot be entirely responsible for MSI as the HDAC
inhibitor sodium butyrate produced only minimal destabi-
lization of a trinucleotide repeat sequence (Gorbunova et al.
2004). Furthermore, contrary to arguments that transcrip-
tional repression of microsatellite regions protects against
MSI, overexpression of the HDAC SIRT1, which functions
in gene silencing through chromatin remodeling, was linked
to CpG island hypermethylation and high MSI in cancer
cells (Nosho et al. 2009). This latter observation may allude
to an indirect mechanism of global gene hypermethylation
and gene silencing on MSI (as discussed below), and
highlights the complexity of the links between epigenetic
marks and MSI.

In addition to promoting microsatellite stability through
transcriptional repression, another means by which
DNMT1 promotes repeat stability is through a direct
relationship between DNA methylation and MMR (Table 1).
DNA methylation has been suggested to provide a
mechanism for strand recognition following DNA replica-
tion—hemimethylated DNA generated by DNA replication
may facilitate the MMR machinery in distinguishing the
nascent strand from the template strand (Hare and Taylor
1985). The methyl CpG-binding protein MBD4/MED1
may provide the functional link between MMR and strand
recognition. MBD4 co-localizes with foci of methylated
DNA and was identified in a yeast 2-hybrid screen as
interacting with the MMR component MLH1 (Bellacosa et
al. 1999; Hendrich and Bird 1998). Although the mecha-
nistic relationship between MBD4 and the MMR machin-
ery remains undefined, MBD4 contains glycosylase repair
activities with a preference for hemi-methylated CpG/CpT
mismatches, thus providing a direct functional link between
DNA methylation and MMR (Hendrich et al. 1999).

Yet another potential functional link between DNMT1
and MMR was revealed when DNMT1 was shown to
interact with proliferating cell nuclear antigen (PCNA), the
DNA polymerase processivity factor (Chuang et al. 1997).
Loss of PCNA causes MSI, likely due to its function in
DNA repair (Baida et al. 2003). PCNA promotes both
MMR and nucleotide-excision repair through its interaction
with the MMR factors MLH1 and MSH2, and PCNA
rapidly recruits DNMT1 to sites of DNA repair through a
direct interaction with DNMT1 (Mortusewicz et al. 2005;
Nichols and Sancar 1992; Umar et al. 1996). Although the
physical mechanism by which DNMT1 and these MMR
proteins facilitate microsatellite stability is not known, the

association between these components and MSI is quite
strong.

Microsatellite instability and human disease

Epigenetics, MMR, and cancer

An alternate, indirect mechanism in which genomic destabi-
lization occurs is through DNA methylation-induced global
changes in gene expression that alter transcriptional regulation
of proteins responsible for repeat stabilization (Table 1), an
effect that has been observed in cancer. In general, the
genome of tumor cells is hypomethylated, particularly in
regions of repetitive DNA. Widespread hypomethylation
contributes to a hyper-mutation state in cancer, which may
generate oncogenic mutations or loss of heterozygosity of
tumor suppressor genes. Additionally, tumor cells also
demonstrate sites of local hypermethylation, frequently at
CpG islands that would, under normal circumstances, be
hypomethylated (Robertson and Wolffe 2000). Site-specific
CpG island hypermethylation affects genomic stability when
it targets promoters of MMR genes. Along these lines, MSI
is a common pathway to tumor development, and many MSI
tumors contain mutations in MMR genes or epigenetic
repression of MMR genes (Laghi et al. 2008).

An underlying methylation defect has been described in
a subset of colorectal cancers in which promoter CpG
islands are hypermethylated at high frequency, a condition
termed the CpG island methylator phenotype (CIMP; Issa
2004; Toyota et al. 1999). One class of CIMP tumors
displays MSI and concurrent inactivation of MLH1 by
promoter hypermethylation (Issa 2004). The first evidence
of CIMP came from the finding that colorectal tumors
lacking MLH1 expression displayed MLH1 promoter hyper-
methylation but no MLH1 mutations (Kane et al. 1997), and
subsequent reports have characterized MSI tumors as
having a strong association with promoter hypermethyla-
tion compared to non-MSI tumors (Ahuja et al. 1997; Veigl
et al. 1998). Moreover, experiments introducing a trans-
genic reporter gene into cancer cell lines revealed that
expression of the reporter was associated with genetic
instability: upon introduction of the transgene, cell lines
deficient in MMR showed strong repression of the reporter
gene compared to MMR proficient lines (Lengauer et al.
1997). The contrasting behavior of the transgene was linked
to cell line-specific methylation differences that were
negated by 5-azadC treatment, rescuing transgene expres-
sion (Lengauer et al. 1997). These reports are consistent
with the idea that CIMP is associated with increased
DNMT1 expression or enhanced DNA methyltransferase
activity (Teodoridis et al. 2008). Additional evidence from
experiments in mice has further highlighted the importance
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of DNA methyltransferase activity in CIMP tumors: mice
deficient for Mlh1 expression due to Mlh1 promoter
hypermethylation were less susceptible to intestinal tumor
formation when Dnmt1 function was also reduced (Trinh et
al. 2002). Interestingly, although Mlh1/Dnmt1-deficient
mice were less susceptible to intestinal tumorigenesis, they
were more susceptible to lymphoid tumor development, a
result linked to hypomethylation-induced genomic instability
(Trinh et al. 2002). In Dnmt1-deficient mice, a similar
phenotype was observed including genomic hypomethyla-
tion, increased lymphomagenesis, and marked genomic
instability, particularly trisomy of chromosome 15 (Gaudet
et al. 2003). Thus, DNA methylation is a double-edged
sword in maintaining proper growth controls in that too
much methylation enhances tumor-associated repression of
repair genes, but too little methylation enhances genomic
instability in repetitive regions that require a heterochromatic
state for their stability. Obtaining a better understanding of
the mechanisms of maintaining the proper balance and
distribution of methyl marks in normal tissues will be critical
for understanding how disruption of this balance contributes
to cancer.

Other human disease associations with MSI

Trinucleotide repeat expansion is a hallmark of more than
20 human diseases including fragile X syndrome, Huntington"s
disease, and myotonic dystrophy (Mirkin 2007). These
diseases are characterized by an “anticipation” phenomenon
in which microsatellite expansion and disease severity worsen
with each generation (Mirkin 2007). DNA methylation
defects may directly contribute to the etiology of some repeat
expansion diseases, because the developmental stages in
which MSI occurs coincide with two key periods during
which epigenetic reprogramming occurs (Gorbunova et al.
2004; Pearson 2003; Reik et al. 2001; Yoon et al. 2003).
Moreover, DNA methylation was linked to stabilization of
the CGG repeats whose expansion causes fragile X
syndrome (Wohrle et al. 1998).

A key question is how do repeat expansions cause
disease? One mechanism is through disruption of gene
function: microsatellite expansions residing in exon or
intron sequences disrupt the normal function of the gene
product. Repeat expansions also produce local epigenetic
changes. These expansions disrupt local chromatin structure
and alter the expression of adjacent genes, an effect that has
been extensively studied in myotonic dystrophy patients
(Gatchel and Zoghbi 2005; Mirkin 2007). Myotonic
dystrophy is associated with expansion of a CAG repeat
within the 3′UTR of the DMPK gene. Repeat length is
inversely correlated with expression of the flanking genes
DMPK and SIX5/DMAHP, both of which have been
implicated in the pathology of myotonic dystrophy (Klesert

et al. 2000, 1997; Thornton et al. 1997). Analysis of
chromatin from skeletal muscle of individuals with myo-
tonic dystrophy showed that the region surrounding the
CAG expansion was protected from DNase digestion
(Otten and Tapscott 1995), presumably due to a change in
chromatin structure resulting in chromatin condensation
(Otten and Tapscott 1995). The normal CAG locus was also
shown to contain a region of H3K9 methylated hetero-
chromatin embedded in a euchromatic H3K4 methylated
region (Cho et al. 2005). The expanded repeat allele, in
contrast, was associated with spreading of heterochromatin
(and H3K9 methylation) into gene containing regions.
Heterochromatin boundaries are normally limited by
binding of the zinc-finger insulator protein CTCF; CTCF
binding, however, is lost at the CAG boundaries in
myotonic dystrophy (Cho et al. 2005; Filippova et al.
2001). Methylation of CTCF DNA binding sites prevents
CTCF binding, which may, in turn, permit the spread of
heterochromatin into surrounding euchromatic regions
(Filippova et al. 2001).

Epigenetic modifications and DNA damage

In addition to repeat stabilization, DNA methylation and
chromatin structure strongly influence other forms of
genomic instability such as mutations and chromosomal
rearrangements. For example, hypomethylation in Dnmt1-
deficient murine ES cells produced a striking increase in
gene mutations, deletions, and chromosomal deficiencies
(Chen et al. 1998). Likewise, knockout of DNMT1 and
DNMT3B in a human colon cancer cell line caused large-
scale, randomly occurring chromosomal translocations and
aneuploidy (Karpf and Matsui 2005).

DNA methylation and homologous recombination

DNA methylation is well known to protect against
unlicensed homologous recombination (HR), which is the
basis for many mutational events. Following generation of
a DNA double-strand break (DSB), HR is employed to
form a synapse between homologous chromosomes, a
circumstance that can generate gene conversions, insertions
or deletions, or more extensive chromosomal loss. Tran-
scription enhances HR frequency by exposing single-
stranded DNA and allowing it to invade its homologous
sequence, while DNA methylation-mediated transcriptional
silencing inhibits HR (Dominguez-Bendala and McWhir
2004; Ikeda and Matsumoto 1979; Maloisel and Rossignol
1998). Several reports support the idea that DNMT1
represses HR. Dnmt1 deficiency in mice resulted in
elevated loss of heterozygosity due to mitotic recombina-
tion (Eden et al. 2003), Dnmt1 deficiency in mouse ES cells
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enhanced gene targeting by HR (Dominguez-Bendala and
McWhir 2004), and embryonic carcinoma cells carrying
integrated transgenic reporter constructs displayed in-
creased recombination among transgenic sequences in
response to depletion of DNA methylation by 5-azadC
(McBurney et al. 2001). In a complementary study, hyper-
methylation of CpG islands within extrachromosomal
fragments reduced the occurrence of deletions within and
dimerizations between fragments, presumably due to
reduced HR (Rizwana and Hahn 1999). Finally, DNMT1
and DNMT3 activity at repetitive pericentromeric and
centromeric loci effectively limits mitotic recombination
frequency and stabilizes centromeric repeats against length
changes (Jaco et al. 2008).

Role of chromatin and DNA methyltransferases in DNA
damage repair

In addition to the role of DNA methylation in prevention of
HR, DNMT1 unexpectedly performs a role in DSB repair
that appears to be independent of its maintenance
methylation activity. DNMT1 has been shown to either
assist in DSB detection or operate in the repair process itself.
Induction of DSBs by irradiation or by 5-azadC shows an
accumulation of DNMT1, its binding partners PCNA and
MBD4, and the repair-associated factor MLH1 at foci of
DSBs, and DNMT1 deficiency reduces the recruitment of
DNA repair proteins to these foci (Mortusewicz et al. 2005;
Palii et al. 2008; Ruzov et al. 2009). The well-established
PCNA-DNMT1 interaction has recently been shown to
be nonessential for DNMT1"s maintenance methylation
function (Schermelleh et al. 2007; Spada et al. 2007), and
DNMT1 associates with chromatin independently of
replication (Easwaran et al. 2004), suggesting a role for
the PCNA-DNMT1 interaction separate from maintenance
methylation. PCNA acts in multiple DNA repair processes
including MMR and nucleotide excision repair, and thus
DNMT1 may facilitate this function (Mortusewicz et al.
2005; Nichols and Sancar 1992; Umar et al. 1996). In
summary, DNMT1 functions in the DNA damage re-
sponse, perhaps through a methylation-independent role,
highlighting an important and novel function for DNMT1
that deserves further examination.

DSB repair must operate in the context of complex
higher-order chromatin structure and orchestrate restoration
of chromatin and epigenetic marks at the site of DNA
damage. Chromatin remodeling, like repair of the DNA
itself, is critical for maintaining genomic integrity. Decon-
densation of chromatin in response to DNA damage may be
required to loosen or open the chromatin structure and allow
access for repair machinery (Ziv et al. 2006). Consistent with
this notion, in Saccharomyces cerevisiae, HATs, including
Gcn5 and Esa1, are actively recruited to sites of DSBs

presumably to assist in promoting open chromatin (Groth et
al. 2007; Tamburini and Tyler 2005; van Attikum and Gasser
2005). This activity is only transient, and HDACs rapidly
remove acetylation marks likely to prevent aberrant tran-
scriptional activity in the newly repaired region (Tamburini
and Tyler 2005). Chromatin remodeling following DNA
damage is also mediated by the DNA damage checkpoint
kinase CHK1. CHK1 is normally associated with chromatin
in undamaged cells and specifically phosphorylates histone
H3 at threonine 11 (H3T11) promoting acetylation of H3K9
and continued maintenance of cell cycle regulatory genes in
a transcriptionally active state. Upon DNA damage, CHK1
dissociates from chromatin, and levels of phosphorylated
H3T11 and acetylated H3K9 decline (Shimada et al. 2008;
Smits et al. 2006). This deacetylation may function to
repress transcription at the site of damage, providing
protection for the decondensed chromatin against further
vulnerability to mutations during the repair process.

Another critically important histone modification associated
with DNA damage is phosphorylation of H2A, particularly at
serine 129 and serine 1 (van Attikum and Gasser 2005).
Recruitment of phosphorylated H2A.X (γH2A.X), a variant
of histone H2A, to sites of DSBs is a critical step in the repair
process (Celeste et al. 2003, 2002). γH2A.X-containing
nucleosomes assemble along the regions bordering DSBs,
as observed by immunofluorescence microscopy, and aid in
the recruitment and/or maintenance of DNA break repair
factors and histone modifiers at the site of damage (Rogakou
et al. 2000, 1998; van Attikum and Gasser 2005). Notably,
recruitment of γH2A.X containing histones to sites of DSBs
is also DNMT1 dependent (Palii et al. 2008). In addition, in
both fertilized zygotes and cloned embryos, the occurrence of
γH2A.X-populated DSBs increased in a temporal pattern that
coincided remarkably well with the period of active, DNA
replication-independent demethylation during zygotic pronu-
clear development (Wossidlo et al. 2010). Although the
mechanism underlying this connection is unclear, the
association between these two events and the requirement
for DNMT1 in the recruitment of γH2A.X is consistent with
a functional involvement of DNA methylation in DNA repair.
It will be of great interest to determine the role of DNMT1 at
sites of DNA damage and whether it is methylation
dependent, as this may provide important information on
how DNA methylation inhibitors exert their antitumor effects.

Chromatin modifications and DNA methylation
in centromere function

Epigenetic determinants of centromere identity

A functional centromere is vital for guarding against
chromosomal instability during cell division by maintaining
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proper DNA segregation, averting chromosomal rearrange-
ments, and preventing changes in ploidy. Cytologically, the
centromere appears as a chromosomal constriction, but it
actually consists of a molecularly unique and complex
configuration of chromatin. Centromeric chromatin forms a
densely compact structure that provides attachment sites for
kinetochore proteins and spindle microtubules. The flanking
pericentromeric chromatin recruits a high concentration of
cohesin molecules providing the site for sister chromatid
attachment (Allshire and Karpen 2008).

With every cell generation, each chromosome"s centromere
is habitually re-generated at the same location. Providing a
single site for kinetochore attachment is necessary to ensure
proper chromosomal segregation and stability, and numerous
lines of evidence have established that centromere location/
identity is determined epigenetically (Allshire and Karpen
2008; Amor and Choo 2002; Henikoff et al. 2001; Karpen
and Allshire 1997; Sullivan et al. 2001). For example, cross
species comparison shows that centromeric DNA sequences
vary widely suggesting the lack of a single centromere
recognition sequence. Likewise, human α-satellite repeat
sequence within centromeric DNA is insufficient to generate
a functional centromere, since chromosomes that contain two
regions of centromeric α-satellite DNA, still possess only
one functional kinetochore attachment region. Additionally,
in the absence of a functional centromere, a neocentromere,
which is a functional ectopic centromere, may form at
alternate non-centromeric genetic loci that are devoid of α-
satellite repeats (Amor and Choo 2002; Choo 2000). Having
epigenetic centromeric determinants as opposed to sequence-
specific determinants is advantageous because it provides a
reliable mechanism for transmitting genetic material in the
event of mutational damage to the centromere locus.
Epigenetic determination also allows for adaptive karyotypic
evolution and may provide an important mechanistic means
for speciation (Henikoff et al. 2001). Thus, the epigenetically
determined centromere provides a versatile system for
consistent and faithful transmission of chromosomal material
and for accommodation of karyotype alterations.

Human centromeres are characterized by several thousand
kilobases of a 171-base pair AT-rich repeat referred to as
α-satellite DNA (Amor and Choo 2002). Satellite DNA
sequences typically do not possess similarity among
chromosomes or across species, but their DNA-binding
proteins are frequently conserved. One such important
conserved centromeric chromatin protein is CENP-A, a
centromere-specific core histone that substitutes for his-
tone H3 in the nucleosome core (Palmer et al. 1987).
Centromeric chromatin is composed of alternating blocks
of H3 and CENP-A-containing nucleosomes (Blower et al.
2002). The structural significance of this CENP-A distri-
bution is not known, but it may impart directionality onto
the centromere structure that is necessary for kinetochore

attachment and for bi-directional, anaphase migration of
sister chromatids (Allshire and Karpen 2008). Importantly,
CENP-A is necessary and sufficient for recruitment of
kinetochore proteins for mitosis (Palmer et al. 1991;
Palmer et al. 1987). CENP-A deficiency disrupts kineto-
chore assembly and progression of mitosis, whereas
CENP-A overexpression induces ectopic spreading of
centromeric chromatin to non-centromeric locations and
subsequent redistribution of kinetochore proteins (Allshire
and Karpen 2008; Sullivan et al. 2001). Interestingly,
CENP-A is recruited to DSBs, and cell survival following
generation of DSBs is proportional to CENP-A activity
(Zeitlin et al. 2009). Thus, CENP-A is multifaceted in its
involvement in genomic maintenance and stability. H2A.
Z, another histone variant replacing H2A in non-CENP-A-
containing centromeric and pericentromeric nucleosomes, is
also required for centromere structure and sister chromatid
adhesion prior to chromosomal segregation (Greaves et al.
2007). The interplay between CENP-A and H2A.Z histone
variants along with their unique arrangements of histone
modifications (see below) appear to be key determinants in
the organization and function of the centromere.

Histone modifications in centromere function
and chromosomal condensation

Centromeric and pericentromeric chromatin contain unique
and largely non-overlapping configurations of histone
marks that are critical for centromere function (Fig. 1).
Interestingly, despite the highly condensed nature of
centromeric chromatin, its array of histone modifications
is quite distinct from constitutive heterochromatin. Centro-
meric heterochromatin contains a characteristic combination
of both euchromatic and heterochromatic marks (Lam et al.
2006; Sullivan and Karpen 2004). For example, condensed
transcriptionally inert heterochromatin is defined by H3K9
di- and tri-methylation, but immunofluorescence studies
showed that centromeric chromatin, despite being highly
condensed, does not contain these marks (Sullivan and
Karpen 2004). Surprisingly, CENP-A containing centromeric
chromatin contains H3K4me2, a mark associated with
euchromatin and transcriptional permissiveness (Sullivan
and Karpen 2004). However, other marks which confer an
“open” euchromatic and transcriptionally active signature,
such as H3K4me3 and histone acetylation, are absent from
centromeres (Sullivan and Karpen 2004). Pericentromeric
heterochromatin, on the other hand, more closely resembles
canonical heterochromatin. It is hypoacetylated and enriched
for both H3K9me2 and H3K9me3; however, H3K9me3
domains are located distally from the centromere, a
configuration that may function to establish centromeric
boundaries (Sullivan and Karpen 2004). Consistent with a
functional role for H3K9 trimethylation in pericentromeric
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heterochromatin, the H3K9 methylases, SUV39H1 and
SUV39H2, are critical for mitotic progression. SUV39H1
and SUV39H2 accumulate at centromeric domains during
mitosis, and their loss, or the loss of H3K9 methylation, in
pericentromeric regions is detrimental to chromosome
segregation (McManus et al. 2006; Melcher et al. 2000;
Peters et al. 2003, 2001; Rice et al. 2003). Also within
pericentromeric domains, two additional histone methylases,
SUV4-20H1 and SUV4-20H2, were shown to recognize
H4K20 substrates for methylation, a modification necessary
for chromosomal condensation and stability during mitosis
(Oda et al. 2009; Schotta et al. 2004). SUV39H1/2 and
SUV4-20H1/2 enzymes are also associated with recruitment
and stabilization of heterochromatic protein 1 (HP1) to
pericentromeric chromatin to mediate gene silencing and
chromosomal condensation (Bannister et al. 2001; Lachner
et al. 2001; Maison et al. 2002; Schotta et al. 2004; Souza et
al. 2009). Suv39H1/2 activity is also important for CENP-A
assembly into centromeric chromatin, since the fission yeast
homolog of SUV39, Clr4, along with HP1 and other
heterochromatin associated factors, is necessary for loading
CENP-A nucleosomes into centromeric regions (Folco et al.
2008). These studies emphasize how critical the distinctive
patterns of centromeric and pericentromeric histone marks
and their associated methylases are for the proper recruit-
ment and stabilization of centromeric proteins. Global
changes in histone methylation are also critical for whole

chromosomal condensation and centromere function during
mitosis. Inhibition of overall histone methyltransferase
activity just prior to prophase causes defects in chromosome
alignment and segregation due to expansions and loosening
of centromeric chromatin, unstable microtubule associations
with kinetochores, and improper kinetochore protein local-
ization (Heit et al. 2009).

Phosphorylation of serine and threonine residues, partic-
ularly on histones H1 and H3, is another modification
critical for chromosomal condensation during cell division.
Both histone H1 and H3 become phosphorylated upon
entering mitosis and are dephosphorylated upon exiting
mitosis (Gurley et al. 1978; Nowak and Corces 2004). The
accumulation pattern of H3S10 phosphorylation is consis-
tent with its requirement during mitosis given that it is
initiated within pericentromeric regions during late G2
phase and is later removed during anaphase (Hendzel et al.
1997; Van Hooser et al. 1998; Wei et al. 1998, 1999).
Absence of H3S10 phosphorylation yields incomplete
chromosome condensation and defects in chromosomal
segregation (Hsu et al. 2000; Wei et al. 1998, 1999). CENP-
AS7 is phosphorylated similarly to H3S10, and the residues
surrounding CENP-AS7 share similarity with those
surrounding H3S10, suggesting functional conservation
(Zeitlin et al. 2001a). Aurora kinases are responsible for
H3S10 and CENP-AS7 phosphorylation, and inhibition of
their activity results in loss of pericentromeric H3S10P

Centromeric Chromatin
H3K4me2
CENP-AS37P/H3S10P
H3T3P
H2AS1P
H4S1P

Pericentromeric Chromatin
H3K9me3
H4K20me2
H3S10P

Heterochromatin
H3K9me2,me3
H4K20me3
H3K27me3
H3S10P
H3R2me

Euchromatin
H3K4me2, me3
H3K9ac

Chromosomal Arm

Factors Mediating Chromatin structure

Aurora Kinases
SUV39H12,
SUV420H1,2
CENPA
DNMT3B

Polycomb Repressive Complexes
SUV39H1,2
SUV420H1,2
G9A,  SETDB1
MLL1-5
DNMT 1, 3A, & 3B

Histone Marks Defining Chromatin Organization

Fig. 1 Chromosomal definition
by histone modifications.
Many molecules, including
histone-modifying enzymes,
histone variants, and DNA
methyltransferases, some of
which are depicted here on the
left, establish the epigenetic
marks and chromatin structure
required for chromosomal
organization and function. On
the right, distinct combinations
of histone modifications define
chromatin regions including the
centromere and pericentromere
that organize and stabilize the
chromosome as a whole and
maintain genetic stability
throughout repeated cell
divisions
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(Kunitoku et al. 2003; Monier et al. 2007). Aurora kinase
phosphorylation of H3S10 recruits condensin to centromeric
and pericentromeric regions to promote chromosomal con-
densation and rigidity (Giet and Glover 2001; Hsu et al. 2000;
Ono et al. 2004; Zeitlin et al. 2001b). One of the critical
factors recruited by H3S10P is HP1α. Binding of the
heterochromatic factor HP1α at centromeric and pericentro-
meric marks throughout the cell cycle may be affected by the
size of the H3S10P expression domain (Monier et al. 2007).

Phosphorylation of H2AS1 and H4S1 is also closely
associated with mitosis and is similarly timed with the
presence of H3S10P (Xu et al. 2009). Likewise, H3T3
shows patterns of mitosis-specific phosphorylation with
particularly strong accumulation in centromeric regions
during chromatin condensation (Dai et al. 2006, 2005;
Eswaran et al. 2009; Polioudaki et al. 2004). H3T3
phosphorylation is generated by the kinase Haspin in
regions devoid of H3K4 methylation, and its deficiency
causes reduced sister chromatid cohesion and defects in
metaphase chromosomal misalignment (Dai et al. 2006,
2005; Eswaran et al. 2009).

Another important chromatin configuration required for
chromosomal condensation is the removal of histone
acetylation via the HDACs (David et al. 2003). Acetylation
is largely a mark of euchromatin and transcriptional
permissiveness, and aberrant acetylation during mitosis
reduces chromosome condensation and impairs sister
chromatid separation (Cimini et al. 2003; Jeppesen et al.
1992). Inhibition of HDACs also causes loss of transcrip-
tional repression in centromeric regions, chromosomal
segregation defects, and chromosomal loss in fission yeast
(Ekwall et al. 1997). Importantly, in fission yeast, the
chromosomal condensation and segregation defects caused
by HDAC inhibition persist even when HDAC activity is
restored, suggesting the presence of an inherited mecha-
nism for replicating mitotic deacetylation activity (Ekwall
et al. 1997). In mammalian centromeres, histone deacety-
lase activity relies upon DNA methylation since DNMT1 is
required for maintenance of histone deacetylation in
pericentromeric domains (Xin et al. 2004).

DNA methylation in centromere function and kinetochore
assembly

Centromeric and pericentromeric DNA is heavily methyl-
ated at CpG dinucleotides, a status that persists throughout
the cell cycle and is important for centromere function
(Monier et al. 2007; Wong et al. 2006). The requirement for
this centromere-specific methylation is quite apparent in
diseases characterized by chromosomal segregation defects,
such as some cancers and ICF syndrome. These diseases,
which demonstrate large-scale gain or loss of chromo-
somes, are often associated with loss of DNA methylation

at centromeric and/or pericentromeric loci (Gisselsson et al.
2005; Hansen et al. 1999; Lengauer et al. 1997; Wong et al.
2001). For example, a subset of hepatocellular carcinomas
has been defined by particular chromosome 1 rearrange-
ments stemming from a pericentromeric breakpoint, which
was highly correlated with hypomethylation of pericentro-
meric satellite-2 CpG dinucleotides (Wong et al. 2001). The
requirement for DNA methylation is also apparent in
patients with ICF syndrome. ICF syndrome patients exhibit
hypomethylation of heterochromatin, particularly of peri-
centromeric satellite-2 repeats within chromosomes 1, 9,
and 16, resulting in decondensation of pericentromeric
chromatin (Gisselsson et al. 2005; Hansen et al. 1999;
Miniou et al. 1994, 1997). DNMT3B"s PWWP domain is
essential for methylation of these repeats, and significantly,
the majority of ICF syndrome patients have mutations in
DNMT3B that at least partially disrupt its methylation
activity (Chen et al. 2004; Hansen et al. 1999; Xu et al.
1999).

The effects of DNA methylation and DNMT activity in
pericentromeric and centromeric heterochromatin formation
appear to be mediated through histone-modifying enzymes,
heterochromatin factors, and centromeric proteins. Deple-
tion of DNMT1 prevents accumulation of H3S10P foci,
perhaps by affecting the subnuclear localization or the
binding affinity of Aurora kinases to the centromere
(Monier et al. 2007). DNMT3B also facilitates centromeric
heterochromatin formation and chromosomal condensation
through an association with condensin complexes (Geiman
et al. 2004). DNMT3A and DNMT3B are recruited by
H3K9me3-containing nucleosomes and SUV39H1 to peri-
centromeric domains, where they also interact with the
heterochromatin factors HP1β and HP1α (Fuks et al. 2003;
Geiman et al. 2004; Lehnertz et al. 2003).

DNA methylation and centromere function are further
linked by the recent finding that DNMT3B interacts with
the constitutive centromere protein CENP-C. CENP-C is an
essential kinetochore protein that binds centromeric α-
satellite DNA and is required for kinetochore assembly
during mitosis (Kalitsis et al. 1998; Kwon et al. 2007; Politi
et al. 2002). DNMT3B and CENP-C interact and become
co-enriched at centromeric foci, reaching peak enrichment
during metaphase (Gopalakrishnan et al. 2009). Impor-
tantly, this co-enrichment requires the mutual activity of
both factors, since siRNA knockdown of either DNMT3B
or CENP-C reduces the other"s binding to centromeric and
pericentromeric regions. This enrichment also facilitates
DNMT3B"s enzymatic activity, since CENP-C knockdown
resulted in significant reduction in DNA methylation at
both centromeric α-satellite DNA and pericentromeric
satellite-2 sequence. Both CENP-C and DNMT3B are
required for HP1α recruitment to centromeric and pericen-
tromeric regions, and their loss affects chromosomal
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segregation and mitotic progression. Based on these
findings, it is possible that loss of centromeric CENP-C
and HP1α recruitment in DNMT3B-deficient ICF patients
contributes to the marked centromeric instability that is a
hallmark of this disorder (Gopalakrishnan et al. 2009).

Importantly, DNA methylation within the centromere is
not entirely ubiquitous and unrestrained, but it instead
consists of specific non-methylated sites within extensively
methylated regions. Non-methylated regions are particularly
important for the kinetochore protein CENP-B. CENP-B,
which interacts with both CENP-A and CENP-C, binds a
specific 17-base pair sequence within α-satellite DNA and
provides an important mechanism for centromere identity
(Ando et al. 2002; Masumoto et al. 1989). Loss of CENP-B
does not affect kinetochore assembly or function (Choo
2001; Hudson et al. 1998; Kapoor et al. 1998; Perez-Castro
et al. 1998), but it instead functions to effectively limit
multi-centromere formation and promote heterochromatin
formation via SUV39H1 recruitment and DNA methylation
(Okada et al. 2007). The centromeric pattern of methylation
consisting of unmethylated CENP-B binding sites inter-
mingled with extensively methylated regions is important for
these functions since aberrant DNA methylation or 5-azadC
treatment disrupts binding of CENP-B to these loci and
alters its distribution (Miniou et al. 1997; Mitchell et al.
1996; Okada et al. 2007; Tanaka et al. 2005).

Interestingly, centromeric and pericentromeric DNA
methylation is distinctive in that its function is not simply
to promote widespread transcriptional silencing. Despite the
dense DNA methylation in these regions, these genetic loci
show signs of transcriptional activity (Lehnertz et al. 2003).
Analysis of DNAmethylation of neocentromeres showed that
most CpGs are hypermethylated, except for small domains of
hypomethylation corresponding to transcriptionally permis-
sive sites (Wong et al. 2006). Furthermore, centromeres on
human artificial chromosomes showed loss of function when
transcription within the centromere was altered (Nakano et
al. 2008). Either strong transcriptional repression or broad
transcriptional activation caused loss of CENP-A, -B, and -C
binding, loss of kinetochore assembly, and chromosomal
missegregation (Nakano et al. 2008). Thus, studies using
artificial chromosomes and neocentromeres suggest that a
delicate balance between transcriptional activity and repres-
sion is required to maintain centromere functionality.

Conclusions

In summary, DNA methyltransferases affect chromosomal
stability through DNA methylation, chromatin remodeling,
and recruitment of heterochromatin specific factors. Genetic
loss-of-function experiments involving the DNA methyl-
transferases have only just begun to elucidate their

pervasive effects on genomic stability and the crosstalk
between DNA methylation and the histone code. Our
understanding of how DNA methylation and the histone
code affect each other to differentially establish functional,
region-specific chromatin structure is still in its early stages,
but it is increasingly evident that these epigenetic marks are
critical for genomic stability and disruption of these
mechanisms contributes to a growing number of human
malignancies.
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