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Abstract

Background: Glioma is the most common of all primary brain tumors with poor prognosis and high mortality. The
2016 World Health Organization classification of the tumors of central nervous system uses molecular parameters in
addition to histology to redefine many tumor entities. The new classification scheme divides diffuse gliomas into
low-grade glioma (LGG) and glioblastoma (GBM) as per histology. LGGs are further divided into isocitrate
dehydrogenase (IDH) wild type or mutant, which is further classified into either oligodendroglioma that harbors 1p/
19q codeletion or diffuse astrocytoma that has an intact 1p/19q loci but enriched for ATRX loss and TP53 mutation.
GBMs are divided into IDH wild type that corresponds to primary or de novo GBMs and IDH mutant that
corresponds to secondary or progressive GBMs. To make the 2016 WHO subtypes of diffuse gliomas more robust,
we carried out Prediction Analysis of Microarrays (PAM) to develop DNA methylation signatures for these subtypes.

Results: In this study, we applied PAM on a training set of diffuse gliomas derived from The Cancer Genome Atlas
(TCGA) and identified DNA methylation signatures to classify LGG IDH wild type from LGG IDH mutant, LGG IDH
mutant with 1p/19q codeletion from LGG IDH mutant with intact 1p/19q loci and GBM IDH wild type from GBM
IDH mutant with an accuracy of 99–100%. The signatures were validated using the test set of diffuse glioma
samples derived from TCGA with an accuracy of 96 to 99%. In addition, we also carried out additional validation of
all three signatures using independent LGG and GBM cohorts. Further, the methylation signatures identified a
fraction of samples as discordant, which were found to have molecular and clinical features typical of the subtype
as identified by methylation signatures.

Conclusions: Thus, we identified methylation signatures that classified different subtypes of diffuse glioma
accurately and propose that these signatures could complement 2016 WHO classification scheme of diffuse glioma.
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Background
The neoplasia of non-neuronal glial cells in the brain is re-
ferred to as glioma and is the most common type of pri-
mary central nervous system (CNS) tumors [1]. The
different histological subtypes of glioma are as follows:
astrocytoma being the most common, accounting for 70%
of all cases, while oligodendroglioma comprises 9% which
includes classic oligodendrogliomas as well as mixed oli-
goastrocytomas and ependymoma comprises 6% [2].
Over the past decades, classification of brain tumors

was based on the histopathological and microscopic fea-
tures in hematoxylin- and eosin-stained sections, like

cell type, level of differentiation, identifying necrotic le-
sions, and presence of lineage-specific markers. Accord-
ing to the WHO 2007-based classification, grade II/
diffused astrocytoma (DA) was described as low grade
while high-grade glioma comprised of grade III/anaplas-
tic astrocytoma (AA) and grade IV/glioblastoma (GBM)
[3]. The vast majority of GBM develop de novo in eld-
erly patients with no prior clinical or histological evi-
dence and are referred to as primary GBM. Secondary
GBM progresses through low-grade diffuse astrocytoma
or anaplastic astrocytoma and is manifested in younger
patients. Several studies have shown that glioma is
highly heterogeneous which indicates that tumors of
same grade have diverse genetic and epigenetic molecu-
lar aberrations [4–9]. With the invent of new technolo-
gies, many high-throughput studies have reported
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different molecular signatures based on glioma CpG
island methylator phenotype (GCIMP), expression-
based studies for mRNA, miRNA, and lncRNA in
GBM [10–13]. One of the most exciting and clinically
relevant observations was the discovery that a high
percentage of grade II/III and grade IV secondary
glioblastoma harbor mutations in the genes isocitrate
dehydrogenase 1 and 2 [2]. Growing data indicate
that these mutations play a causal role in gliomagen-
esis, have a major impact on tumor biology, and also
have clinical and prognostic importance [2].
Nearly 12% of GBM patients have been identified to

have point mutation in codon 132 (R132H) of the
isocitrate dehydrogenase 1 (IDH1) gene located in the
chromosome locus 2q33 [14]. IDH1 codes for a cyto-
solic protein that controls oxidative cellular damage
[14, 15]. Several studies showed that the IDH1 muta-
tion is inversely associated with grade in diffuse glial
tumors, affecting 71% of grade II, 64% of grade III,
and 6% of primary glioblastomas [14]. Interestingly,
IDH mutation is found to be present in the secondary
glioblastoma (76%) probably because these tumors
have been derived from the lower grade gliomas [16].
IDH1 is an enzyme and it catalyzes the oxidative de-
carboxylation of isocitrate to produce α-ketoglutarate
(α-KG) [17].
IDH mutation has been shown to be associated

with alterations in the methylome thus being suffi-
cient to establish glioma hypermethylator phenotype
[18]. At present, 2016 WHO CNS tumor classification
has included both molecular markers along with
histological features to identify and classify different
subtypes of diffuse glioma which includes the WHO
grade II and grade III astrocytic tumors, the grade II
and III oligodendrogliomas, and the grade IV glio-
blastomas. The low-grade gliomas (LGGs), which in-
clude the WHO grade II and grade III astrocytic
tumors and the grade II and III oligodendrogliomas,
are classified based on IDH mutation status. The
LGG IDH mutant subtype is further classified based
on the codeletion of 1p/19q where LGG IDH mutant
patients harboring 1p/19q codeletion is termed as
oligodendrogliomas (ODG) while LGG IDH mutant
patients having intact 1p/19q loci are termed as dif-
fuse astrocytoma which may be enriched in TP53
mutation/ATRX loss. The other axis is the glioblast-
oma (GBM) which, similar to LGG, is further classi-
fied into IDH WT and mutant. The deficiency in this
classification is that factors like intra-tumoral hetero-
geneity and insufficient molecular information could
result in our ability to classify certain samples to any
specific categories. In such cases, signatures based on
whole tumor studies to classify the glioma subtypes
might further complement 2016 WHO classification.

In the present study, we investigated the altered
methylation pattern among the different subtypes of dif-
fuse gliomas as per 2016 WHO CNS tumor classification
[19] and derived methylation-based classification signa-
ture for distinguishing different subtypes. Our study sets
up the premise of using methylation signature in com-
bination to the 2016 WHO classification system with a
higher precision of classification of the diffuse glioma
patients, thereby helping better diagnosis and appropri-
ate treatment therapy.

Result
The overall work flow of methylation-based signatures to
distinguish diffuse glioma subtypes of 2016 WHO
classification
To develop methylation-based signatures to distinguish
diffuse glioma subtypes as per 2016 WHO CNS tumor
classification (Fig. 1), we subjected the 450K DNA
methylation data of The Cancer Genome Atlas (TCGA)
diffuse glioma samples (https://cancergenome.nih.gov/)
to various statistical tools and validation steps (Fig. 2).
The methylation signatures were developed to distin-
guish LGG IDH mutant from LGG IDH WT, LGG
IDH mutant with 1p/19q codeletion (oligodendrogli-
oma) from LGG IDH mutant with intact 1p/19q loci
(diffuse astrocytoma) and GBM IDH mutant (progres-
sive GBM) from GBM IDH WT (de novo GBM). The
TCGA samples were classified into these groups as
per 2016 WHO classification scheme (Fig. 1). For
methylation signature development, to begin with, we
performed a Wilcoxon-rank sum test between differ-
ent diffuse glioma subtypes to identify a list of signifi-
cantly differentially methylated CpG probes, which
were further subjected to a differential β value (Δβ)
of 0.4 between groups. The TCGA samples were then
divided randomly into two equal groups as training
and test sets (Additional file 1: Table S1). The train-
ing set was subjected to Prediction Analysis of Micro-
arrays (PAM) [20] to identify the methylation
signatures containing minimum number of CpGs with
least error. The robustness of the identified signatures
was internally cross validated within training set using
Support Vector Machine (SVM) [21] and subset valid-
ation. The signatures were further applied on the test
set for the additional validation. Further, the signa-
tures were subjected to external validation by using
independent cohorts. We also used principal compo-
nent analysis (PCA) to test the ability of methylation
signatures to separate the two compared groups into
two distinct clusters. Additionally, 10-fold cross-
validation by PAM was carried out to identify the dis-
cordant samples, which were then subjected to fur-
ther analysis to find out the true nature of these
samples.
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14 CpG methylation signatures to distinguish LGG IDH
mutant from LGG IDH wild type (WT): identification and
validation
PAM analysis of differentially methylated CpGs
(Additional file 1: Table S2) in the training (TCAG)
set (Additional file 1: Table S1) identified a set of 14
CpGs to distinguish IDH mutant from IDH WT in
LGG at a threshold value of 18.9 with least error
(Fig. 3a, Additional file 2: Figure S1A). The robustness of
this probe set was tested by internal cross-validation using
SVM, which gave a classification accuracy of 100% and
subset validation with an accuracy of 100% (Additional file
2: Figure S2A and B respectively; see the Methods section
for more details). The CpG probes of the signature were
found to be hypermethylated in IDH mutant LGGs com-
pared to IDH WT LGGs (Fig. 3b and Table 1). Further,
upon subjecting the 14 CpG probes to PCA, the two prin-
cipal components were able to form two distinct clusters
for IDH mutant and IDH WT LGGs (Fig. 3c). Predic-
tion accuracy estimation by 10-fold cross-validation
using PAM showed that the 14 CpG probe methyla-
tion signatures predicted all LGG IDH mutant sam-
ples accurately with no error (Fig. 3d). Similarly, all
LGG IDH WT samples were rightly predicted to be
LGG with WT IDH samples based on the 14 CpG
probe methylation signatures (Fig. 3d). Thus, the 14
CpG DNA methylation signatures were able to dis-
criminate LGG IDH mutant from LGG IDH WT with
an overall classification accuracy of 100%. The sensi-
tivity and specificity of the signature for IDH mutant
and WT in LGG are 100% (Table 2).

Next, we validated the strength of 14 CpG methylation
signatures using the test set (Additional file 1: Table S1).
The 14 discriminatory probes were observed to be differ-
entially methylated between LGG IDH mutant and LGG
IDH WT in the test set also (Additional file 2: Figure S3A
and Additional file 1: Table S3A). The PCA demonstrated
that the probes were able to distinguish IDH mutant from
the WT group as two distinct clusters (Additional file 2:
Figure S3B). Prediction accuracy estimation by 10-fold
cross-validation using PAM showed that the 14 CpG
probe methylation signatures predicted all IDH mutant
LGG samples accurately except one with an error rate of
0.004 (Additional file 2: Figure S3C). Among IDH WT
LGG samples, all of them were accurately predicted by
the signature (Additional file 2: Figure S3C). Thus, the 14
CpG methylation signatures were able to discriminate
between IDH mutant and WT LGG samples with an
overall diagnostic accuracy of 99.62% in the test set. The
sensitivity of the signature for IDH mutant LGG is 99.53%
while for IDH WT LGG is 100%, and the specificity for
IDH mutant is 100% whereas for those of the IDH WT, it
is 99.53% (Table 2). The 14 CpG methylation signatures,
as identified in the training set and validated in the test
set, were also used to classify the entire set of TCGA
LGG. We found that the 14 discriminatory probes distin-
guished two groups (Additional file 2: Figure S4A, B, and
C) with an overall accuracy of 99.81% (Table 2).
Next, we have also carried out additional validation of

14 CpG methylation signatures using two independent
external LGG cohorts (GSE58218 [22] and GSE48462
[23]). In GSE58218, the 14 CpG methylation signatures

Fig. 1 Overview of the 2016 WHO CNS tumor classification-based algorithm with the number of patients from TCGA dataset that is used in the
present study
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were able to discriminate IDH mutant from WT LGG
samples with an overall diagnostic accuracy of 98.5%
(Tables 1 and 2; Fig. 4a–c). Similarly, the 14 CpG methyla-
tion signatures were able to discriminate IDH mutant
from WT LGG samples with an overall diagnostic
accuracy of 85.8% in GSE48462 (Table 2; Additional file 1:
Table S3A; Additional file 2: Figure S5A, B, and C). Thus,
from these experiments, we conclude that the 14 CpG
methylation signatures developed as above distinguished
LGG IDH mutant from WT samples with high accuracy.

14 CpG probe methylation signatures to classify
oligodendrogliomas (ODG) and diffuse astrocytoma (DA):
identification and validation
PAM analysis of differentially methylated CpGs
(Additional file 1: Table S4) on the training (TCGA)
set (Additional file 1: Table S1) identified a set of 14 CpGs
to distinguish IDH mutant with 1p/19q codeletion (desig-
nated as oligodendroglioma) from LGG IDH mutant with

intact 1p/19q loci (designated as diffuse astrocytoma) at
a threshold value of 9.491 with minimal error (Fig. 5a,
Additional file 2: Figure S1B). The robustness of this
probe set was tested by internal cross-validation using
SVM, which gave a classification accuracy of 97.67 to
100% and subset validation with an accuracy of 99 to
100% (Additional file 2: Figure S2C and D, respectively;
see the Methods section for more detail). The CpG
probes that correspond to this signature were found to
be hypermethylated in oligodendroglioma compared to
diffuse astrocytoma (Fig. 5b and Table 3). Further, upon
subjecting the 14 CpG probes to PCA, the two princi-
pal components were able to separate these two groups
into two distinct clusters (Fig. 5c). Prediction accuracy
estimation by 10-fold cross-validation using PAM
showed that the 14 CpG probe methylation signatures
predicted all oligodendroglioma samples accurately
with no error (Fig. 5d). With respect to diffuse astrocy-
toma, all samples except two were accurately predicted

Fig. 2 The schematic representation of the work flow of statistical analysis. PAM identified 14 discriminatory CpG probes of DNA methylation
between (1) IDH Mut (LGG IDH Mut) and WT (LGG IDH WT) which was further validated by principal component analysis (PCA). Fourteen CpG
probe methylation signatures were then validated in test set. Here, TCGA dataset (450K methylation) was randomly divided into equal halves to
form the training and test set. Similar protocol was performed for (2) LGG IDH Mut 1p/19q intact (diffuse astrocytoma/DA) versus LGG IDH Mut
1p/19q codel (oligodendroglioma/ODG) and (3) GBM IDH Mut versus WT. All the derived methylation signatures are validated in independent
validation datasets with high accuracy
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to be diffuse astrocytoma based on the 14 CpG probe
methylation signatures with an error rate of 0.0153 (Fig. 5d).
Thus, the 14 CpG DNA methylation signatures were able
to discriminate oligodendroglioma from diffuse astrocy-
toma with an overall diagnostic accuracy of 99.07%. The
sensitivity of the signature for oligodendroglioma is 100%
while for diffuse astrocytoma is 98.47%, and the specificity
for oligodendroglioma is 98.47% whereas for those of the
diffuse astrocytomas is 100% (Table 2).
Next, we validated the strength of 14 CpG methylation

signatures using the test (TCGA) set (Additional file 1:
Table S1). The 14 discriminatory probes were observed to
be differentially methylated between oligodendrogliomas
and diffused astrocytoma similar to as seen in the training
set (Additional file 2: Figure S6A and Additional file 1:

Table S3B). The PCA demonstrated that the probes were
able to distinguish oligodendrogliomas from diffused
astrocytoma as two distinct clusters (Additional file 2:
Figure S6B). Prediction accuracy estimation by 10-fold
cross-validation using PAM showed that the 14 CpG
probe methylation signatures predicted all oligodendrogli-
oma samples except one accurately with an error rate of
0.0117 (Additional file 2: Figure S6C). Among diffused as-
trocytoma, except seven, all samples were accurately pre-
dicted by the signature with an error rate of 0.0539
(Additional file 2: Figure S6C). Thus, the 14 CpG methyla-
tion signatures were able to discriminate between oligo-
dendroglioma and diffused astrocytoma samples with an
overall diagnostic accuracy of 96.29% in the test set. The
sensitivity of the signature for oligodendrogliomas is

A

B

C D

Fig. 3 Identification of 14 CpG probe methylation signatures of LGG IDH mutant versus WT in training set (TCGA). a Plot demonstrating classification
error for 9554 CpG probes from PAM analysis in training set. The threshold value 18.9 corresponded to 14 discriminatory CpG probes which classified
IDH mutant (n = 217) and WT (n = 49) LGG samples with classification error of 0%. b Heat map of the 14 CpG discriminatory probes identified from the
PAM analysis between LGG IDH Mut and WT patient samples in the training set (TCGA). A dual color code was used where yellow indicates more
methylation (hypermethylation) and blue indicates less methylation (hypomethylation). c PCA was performed using beta (methylation) values of 14
PAM-identified CpG probes between IDH mutant (n = 217) and WT (n = 49) LGG samples in training set. A scatter plot is generated using
the first two principal components for each sample. The color code of the samples is as indicated. d The detailed cross-validation probabilities of
10-fold cross-validation for the samples of training set based on the beta values of 14 CpG probes are shown. For each sample, its probability as LGG
IDH Mut (red color) and WT (green color) is shown and it was predicted by the PAM program as either IDH Mut or WT in LGG samples based on which
grade’s probability is higher. The original histological grade of the samples is shown on the top
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98.83% while for diffused astrocytoma, it is 94.61%, and
the specificity for oligodendrogliomas is 94.61% whereas
for diffused astrocytoma, it is 98.83% (Table 2). The 14
CpG methylation signatures, as identified in the training
set and validated in the test set, were also used to classify
the entire TCGA LGG IDH mutant samples into oligo-
dendroglioma and diffuse astrocytoma samples. We found
that the 14 discriminatory probes behaved similar in the
classification (Additional file 2: Figure S7A, B and C) with
an overall accuracy of 97.69% (Table 2).
In addition, we have also carried out additional valid-

ation of 14 CpG methylation signatures to distinguish oli-
godenroglioma from diffuse astrocytoma using two
independent external LGG cohorts (GSE58218 and
GSE48462). In GSE58218, the 14 CpG methylation signa-
tures were able to discriminate oligodenroglioma from

diffuse astrocytoma samples with an overall diagnostic ac-
curacy of 97.5% (Tables 2 and 3; Fig. 6a–c). Similarly, the
14 CpG methylation signatures were also able to discrim-
inate oligodenroglioma from diffuse astrocytoma samples
with an overall diagnostic accuracy of 78.57% in GSE48462
(Table 2; Additional file 1: Table S3B; Additional file 2:
Figure S8A, B and C). Thus, from these experiments, we
conclude that the 14 CpG methylation signatures devel-
oped as above distinguished oligodenroglioma from diffuse
astrocytoma samples with high accuracy.

13 CpG probe methylation signatures to classify IDH
mutant from wild type (WT) in glioblastoma (GBM):
identification and validation
PAM analysis of differentially methylated CpGs
(Additional file 1: Table S5) in the training (TCGA)

A

B C

Fig. 4 Validation of the 14 CpG methylation signatures of LGG IDH mutant versus WT in an independent validation dataset GSE58218. a Heat
map of the 14 CpG discriminatory probes identified in PAM analysis in IDH mutant (n = 157) and WT (n = 38) LGG patient samples in the entire
TCGA dataset. A dual color code was used where yellow indicates more methylation (hypermethylation) and blue indicates less methylation
(hypomethylation). b PCA was performed using β (methylation) values of 14 PAM-identified CpG probes between IDH mutant (n = 157) and WT
(n = 38) LGG patient samples in the entire TCGA dataset. A scatter plot is generated using the first two principal components for each sample.
The color code of the samples is as indicated. c The detailed probabilities of 10-fold cross-validation for the samples of training set based on the
β values of 14 CpG probes are shown. For each sample, its probability as IDH mutant (red color) and WT (green color) of LGG patient samples is
shown and it was predicted by the PAM program as either LGG IDH mutant or WT based on which grade’s probability is higher. The original
histological grade of the samples is shown on the top
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set (Additional file 1: Table S1) identified a set of 13 CpGs
to distinguish GBM IDH mutant from IDH WT samples
at a threshold value of 2.694 with no error (Fig. 7a,
Additional file 2: Figure S1C). The robustness of this
probe set was tested by internal cross-validation using
SVM, which gave a classification accuracy of 100% and
subset validation with an accuracy of 100% (Additional file
2: Figure S2E and F, respectively; see the Methods section
for more details). The CpG probes of the signature were
found to be hypermethylated in IDH mutant GBMs com-
pared to IDH WT GBMs (Fig. 7b and Table 4). Further,
upon subjecting the 13 CpG probes to PCA, the two prin-
cipal components were able to form two distinct clusters
for IDH mutant and IDH WT GBMs (Fig. 7c). Prediction

accuracy estimation by 10-fold cross-validation using
PAM showed that the 13 CpG probe methylation signa-
tures predicted all the samples accurately with no error
(Fig. 7d). Similarly, among GBM IDH wild-type samples,
all were rightly predicted by the 13 CpG methylation sig-
natures (Fig. 7d). Thus, the 13 CpG DNA methylation sig-
natures were able to discriminate GBM IDH mutant from
GBM IDH WT with an overall classification accuracy of
100%. The sensitivity and specificity of the signature for
IDH mutant and WT in GBM are 100% (Table 2).
Next, we validated the strength of 13 CpG methylation

signatures using the test set (Additional file 1: Table S1).
The 13 discriminatory probes were observed to be differ-
entially methylated between GBM IDH mutant and

A

B

C D

Fig. 5 Identification of 14 CpG probe methylation signatures in training set (TCGA) for diffuse astrocytoma (DA) and oligodendroglioma (ODG).
a Plot demonstrating classification error for 2817 CpG probes from PAM analysis in training set. The threshold value of 9.491 corresponded to 14
discriminatory CpG probes which classified DA (LGG IDH Mut with intact 1p/19q; n = 131) and ODG (LGG IDH Mut with 1p/19q codel; n = 86)
LGG samples with classification error of 0.93%. b Heat map of the 14 CpG discriminatory probes identified from the PAM analysis between DA
and ODG patient samples in the training set (TCGA). A dual color code was used where yellow indicates more methylation (hypermethylation) and
blue indicates less methylation (hypomethylation). c PCA was performed using beta (methylation) values of 14 PAM-identified CpG probes between
DA (n = 131) and WT (n = 86) LGG samples in training set. A scatter plot is generated using the first two principal components for each sample. The
color code of the samples is as indicated. d The detailed cross-validation probabilities of 10-fold cross-validation for the samples of training set based
on the beta values of 14 CpG probes are shown. For each sample, its probability as ODG (red color) and DA (green color) is shown and it was predicted
by the PAM program as either ODG or DA in LGG samples based on which grade’s probability is higher. The original histological grade of the samples
is shown on the top
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GBM IDH WT in the test set also (Additional file 2:
Figure S9A and Additional file 1: Table S3C). The PCA
demonstrated that the probes were able to distinguish
IDH mutant from the WT group as two distinct clusters
(Additional file 2: Figure S9B). Prediction accuracy esti-
mation by 10-fold cross-validation using PAM showed
that the 13 CpG methylation signatures predicted all
IDH mutant GBM samples accurately with no error rate
(Additional file 2: Figure S9C). Among IDH WT GBM
samples, all samples except one were accurately pre-
dicted by the signature with an error rate of 0.0173
(Additional file 2: Figure S9C). Thus, the 13 CpG methy-
lation signatures were able to discriminate IDH mutant
from WT GBM samples with an overall diagnostic ac-
curacy of 98.36% in the test set. The sensitivity of the
signature for IDH mutant GBM is 100% while for IDH
WT GBM is 98.27%, and the specificity for IDH mutant

is 98.27% whereas for those of the IDH WT, it is 100%
(Table 2). The 13 CpG methylation signatures, as identi-
fied in the training set and validated in the test set, were
also used to classify the entire set of TCGA GBM set
(117 IDH WT samples and 7 IDH mutant samples). We
found that the 13 discriminatory probes distinguished
two groups (Additional file 2: Figure S10A, B, and C)
with an overall accuracy of 99.19% (Table 2). Further, we
have also carried out additional validation of 13 CpG
methylation signatures to distinguish GBM IDH mutant
from WT samples using an independent external GBM
cohort (GSE36278 [24]). Analysis revealed that the 13
CpG methylation signatures were able to discriminate
GBM IDH mutant from WT samples with an overall
diagnostic accuracy of 96.10% (Tables 2 and 4; Fig. 8a–c).
Thus, from these experiments, we conclude that the 13
CpG methylation signatures developed as above

Fig. 6 Validation of the 14 CpG methylation signatures of oligodendroglioma (ODG) versus diffuse astrocytoma (DA) in an independent validation
dataset GSE58218. a Heat map of the 14 CpG discriminatory probes identified in PAM analysis in ODG (n = 77) and DA (n = 80) LGG patient
samples in the entire TCGA dataset. A dual color code was used where yellow indicates more methylation (hypermethylation) and blue indicates
less methylation (hypomethylation). b PCA was performed using β (methylation) values of 14 PAM-identified CpG probes between ODG (n = 77)
and DA (n = 80) LGG patient samples in the entire TCGA dataset. A scatter plot is generated using the first two principal components for each
sample. The color code of the samples is as indicated. c The detailed probabilities of 10-fold cross-validation for the samples of training set based
on the β values of 14 CpG probes are shown. For each sample, its probability as ODG (red color) and DA (green color) of LGG patient samples is
shown and it was predicted by the PAM program as either LGG DA or ODG based on which grade’s probability is higher. The original histological
grade of the samples is shown on the top
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distinguished GBM IDH mutant from WT samples with
high accuracy.

Molecular analysis of discordant samples
While the DNA methylation signatures were able to dis-
tinguish different diffuse glioma subtypes, it also identi-
fied a fraction of samples as discordant. It is of our
interest to find out the accurate molecular nature of
these samples in order to assess the true nature of them.
While we could use TCGA cohort for this purpose as it
had all relevant histological and molecular markers, ex-
ternal validation cohorts could not be subjected to mo-
lecular discordant analysis as they do not have these
features. In the classification of LGG IDH mutant from

IDH WT, the 14 CpG signatures identified one IDH mu-
tant LGG sample in the test set as discordant. We car-
ried out a careful assessment of the molecular markers of
this sample using c-Bioportal (http://www.cbioportal.org/)
from the TCGA dataset. For this purpose, we analyzed
TP53 mutation, ATRX loss, and 1p/19q codeletion status
of all the samples (Additional file 1: Table S6, Table S7 A,
B, and C, and Table S8). As per 2016 WHO CNS tumor
classification, all LGG IDH mutant samples that have 1p/
19q codeletion are designated as oligodendroglioma and
those with intact 1p/19q loci and enriched for TP53 muta-
tion/ATRX loss are designated as diffuse astrocytoma.
The LGG IDH mutant discordant sample had intact 1p/
19q, WT TP53, and ATRX genes indicating that this

A

B

C D

Fig. 7 Identification of 13 CpG probe methylation signatures in training set (TCGA) for IDH Mut and WT in GBM. a Plot demonstrating classification
error for 259 CpG probes from PAM analysis in training set. The threshold value of 2.694 corresponded to 13 discriminatory CpG probes which
classified IDH Mut (n = 4) and WT (n = 59) GBM samples with classification error of 0%. b Heat map of the 13 CpG discriminatory probes identified from
the PAM analysis between IDH Mut and WT GBM patient samples in the training set (TCGA). A dual color code was used where yellow indicates more
methylation (hypermethylation) and blue indicates less methylation (hypomethylation). c PCA was performed using beta (methylation) values of 13
PAM-identified CpG probes between IDH Mut (n = 4) and WT (n = 59) GBM samples in training set. A scatter plot is generated using the first two
principal components for each sample. The color code of the samples is as indicated. d The detailed cross-validation probabilities of 10-fold cross-
validation for the samples of training set based on the beta values of 14 CpG probes are shown. For each sample, its probability as IDH Mut (red color)
and WT (green color) GBM samples is shown and it was predicted by the PAM program as either IDH Mut or WT in GBM samples based on which
grade’s probability is higher. The original histological grade of the samples is shown on the top
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sample is not an oligodendroglioma. The presence of WT
TP53 and ATRX genes raises the possibility of it not being
a diffuse astrocytoma. Interestingly, additional analysis re-
vealed that the discordant sample is indeed carrying WT
IDH as per DNA sequencing even though IDH antibody-
based scoring classified it as IDH mutant. Therefore, it ap-
pears that IDH mutation scoring by IHC could be an error
as evidenced by DNA sequencing and that the 14 CpG
methylation signatures are able classify the LGGs more
accurately.
In the classification of LGG oligodendroglioma from

LGG diffuse astrocytoma, 14 CpG probe methylation
signatures identified ten samples as discordant which
did not match the WHO 2016 tumor grading. In order
to understand the true status of the discordant samples,
we analyzed the clinical information and molecular

markers using c-Bioportal (http://www.cbioportal.org/)
from the TCGA dataset. For this purpose, we analyzed
TP53 mutation, ATRX mutation, and 1p/19q codeletion
status in DA, ODG, and discordant samples of LGG
(Additional file 1: Table S6, Table S7 A, B, and C, and
Table S8). Based on the WHO 2016 CNS tumor classifi-
cation, IDH mutant LGGs having intact 1p/19q with an
enrichment of TP53 mutation and ATRX loss are classi-
fied as diffuse astrocytoma. IDH mutant LGG samples
with 1p/19q codeletion are classified as oligodendrogli-
oma. The analysis of discordant samples for the molecu-
lar markers and histological features revealed some
interesting findings. While the single ODG discordant
sample had 1p/19q codeletion and WT TP53/ATRX
genes, this sample was identified as oligoastrocytoma as
per histology. Among nine DA discordant samples, while

A

B C

Fig. 8 Validation of the 13 CpG methylation signatures of GBM IDH mutant versus WT in an independent validation dataset GSE36278. a Heat
map of the 13 CpG discriminatory probes identified in PAM analysis in IDH mutant (n = 16) and WT (n = 61) GBM patient samples in the entire
TCGA dataset. A dual color code was used where yellow indicates more methylation (hypermethylation) and blue indicates less methylation
(hypomethylation). b PCA was performed using β (methylation) values of 13 PAM-identified CpG probes between IDH mutant (n = 16) and WT
(n = 61) GBM patient samples in the entire TCGA dataset. A scatter plot is generated using the first two principal components for each sample.
The color code of the samples is as indicated. c The detailed probabilities of 10-fold cross-validation for the samples of training set based on the
β values of 13 CpG probes are shown. For each sample, its probability as IDH mutant (red color) and WT (green color) of GBM patient samples is
shown and it was predicted by the PAM program as either GBM IDH mutant or WT based on which grade’s probability is higher. The original
histological grade of the samples is shown on the top
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all of them had intact 1p/19q loci, a majority of them
were found to have WT TP53/ATRX genes.
In the classification of GBM IDH mutant from IDH

WT, the 13 CpG probe methylation signatures identified
one GBM IDH WT sample as discordant. In order to
understand the true nature of the discordant sample, we
analyzed the clinical information and molecular markers
using c-Bioportal (http://www.cbioportal.org/) from the
TCGA dataset (Additional file 1: Table S6, Table S8, and
Table S9 A and B). The discordant GBM IDH WT sam-
ple had WT IDH gene as per both immunohistochemi-
cal staining and DNA sequencing. However, this sample
had no amplification of EGFR locus with an intact PTEN
gene, unlike what is expected for a IDH WT GBM
sample.

Discussion
Glioma is the most common and highly malignant pri-
mary brain tumor. The 2007 WHO classification of the
glioma tumors was majorly based on microscopic ap-
pearance of cell type and histopathological markers
largely segregating into three subtypes such as astrocy-
toma, oligodendroglioma, and oligoastrocytoma (mixed)
[3]. With the advent of the high-throughput technolo-
gies, comprehensive understanding of the heterogeneous
genetic and epigenetic landscape of both glioblastoma
and the low grades became vibrant [25, 26]. The histo-
pathological grading of glioma tumors could be sub-
jected to inter-observer variation which would lead to
misclassification with a potential possibility of not pro-
viding the right kind of treatment [27]. To combat this
shortcoming, several groups including work from our
laboratory carried out extensive studies and have identi-
fied several prognostic markers and molecular signatures
based on mRNA, miRNA, and DNA methylation that
would aid in better classification and identifying best
choice of therapy [10–13, 15, 28–31].
The meeting by the International Society of Neuro-

pathology held in Haarlem, Netherland, established
guidelines for how to incorporate molecular findings
into brain tumor diagnosis thereby setting the platform
for a major revision of the 2007 CNS WHO classifica-
tion [32]. The current updated version is summarized in
the 2016 CNS WHO classifications [19]. In this study,
using TCGA 450K DNA methylation data, we developed
methylation signatures that could distinguish different
classes of diffuse glioma with high accuracy. The signa-
tures developed in this study using TCGA data are also
validated extensively using TCGA data as well as inde-
pendent datasets.
Infinium HumanMethylation450K BeadChip array

data for astrocytoma (grade II, III, and IV/GBM), oligo-
dendroglioma, and oligoastrocytoma tumor samples
from TCGA dataset was used in this study. By using

PAM, we have successfully developed and validated
DNA methylation signatures to distinguish LGG IDH
mutant from LGG IDH wild-type samples, LGG IDH
mutant samples into diffuse astrocytoma and IDH mu-
tant GBM from the IDH WT GBMs. The signatures
classified these groups with very high accuracy and also
validated successfully in multiple independent datasets.
We also used PCA to test the ability of signatures to div-
ide the two groups in comparison into two distinct clas-
ses. Further, the 10-fold cross-validation using PAM
identified the discordant samples, which upon further
analysis revealed that majority of misclassified samples
were indeed due to inadequacies of the current methods
used for classification.
Thus, the present study enabled us to identify DNA

methylation fingerprint for each of the groups in com-
parison (LGG IDH1 WT versus mutant, ODG versus
DA, and GBM IDH mutant versus WT). The 2016
WHO classification system fails to classify some samples
accurately in occasions like absence of certain molecular
markers, errors due to antibody-based scoring, and
intra-tumoral heterogeneity. We believe that DNA
methylation signatures based on whole tumor developed
in this study could complement the 2016 WHO classifi-
cation of diffuse glioma subtypes.

Conclusions
In conclusion, we were able to classify diffuse glioma
subtypes with high accuracy. The discordant samples
identified by the methylation signature were found to be
either due to technical errors or mixed histological types.
More importantly, we believe that the high levels of
intra-tumoral heterogeneity reported in glioma could
also be a reason for their misclassification [7, 27]. Col-
lectively, our study indicates that the methylation-based
molecular profiles in combination with the revised 2016
WHO CNS tumor classification guidelines might be able
to classify the samples more precisely.

Methods
Tumor samples and clinical details
Glioma TCGA dataset was used for this study. Methyla-
tion data for histologically defined WHO classification
glioma types, which include astrocytoma (n = 197), oli-
goastrocytoma (n = 136), oligodendroglioma (n = 197),
and glioblastoma (n = 124) samples, was used. Samples
were then segregated according to the WHO 2016 CNS
tumor IHC-based grading classification into three dis-
tinct groups, namely 1. lower grade glioma IDH wild-
type and mutant (LGG IDH WT and mutant), 2. lower
grade glioma IDH mutant with intact 1p/19q termed as
diffuse astrocytoma and with 1p/19q codeletion termed
as oligodendroglioma (DA and ODG), and 3. glioblast-
oma IDH mutant and wild type (GBM IDH WT and

Paul et al. Clinical Epigenetics  (2017) 9:32 Page 15 of 18

http://www.cbioportal.org/


mutant). The clinical information for the same was also
procured from TCGA.
With an aim to identify methylation differences be-

tween the diffuse glioma subtypes (based on IDH muta-
tion and 1p/19q codeletion status) of each group, a
supervised machine learning approach through PAM
(Prediction Analysis of Microarrays) [20] was used. For
this purpose, the first step was to identify significantly
differentially methylated CpG probes between lower
grade glioma IDH WT and mutant, between DA and
ODG, and between GBM IDH mutant and WT which
are described in details below.

Identification of differentially methylated CpGs
In this study, three different comparisons were carried
out—1. LGG: IDH mutant versus WT, 2. LGG IDH mu-
tant: 1p/19q codel (ODG) versus non-codel (DA), and 3.
GBM: IDH mutant versus WT. For the first comparison
between LGG IDH mutant and WT, we have performed
a Wilcoxon-rank sum test between IDH mutant and
WT which yielded 269,442 CpG probes significantly
(FDR ≤0.0001) differentially methylated in mutant versus
WT. Next, a stringent cutoff of 0.4 absolute Δβ value
was applied that showed 9,554 significantly differentially
methylated (26 CpGs were hypomethylated and 9528
CpGs were hypermethylated in IDH mutant LGG;
Additional file 1: Table S2) CpG probes in mutant as
compared to WT IDH LGG patients. Firstly, the TCGA
450K human methylation dataset for LGG patients with
IDH mutation (n = 433) and LGG patients with WT
IDH (n = 97) was randomized and 50% of each of the
two classes formed the training set, and the remaining
50% was used as the test set. We randomized TCGA
dataset ten times to obtain ten different training sets
and their corresponding test sets. After performing PAM
on each of the ten training sets, the training set that gave
least error with minimum number of CpGs was selected
for further studies. This process gave a set of 14 discrim-
inatory CpG probes which were further tested through
SVM and subset analysis before testing on the test set
and external validation sets (Fig. 2; Table 1).
Similarly, analysis was carried out for LGG IDH mu-

tant cohort with and without 1p/19q codeletion (ODG
and DA, respectively) patients (Fig. 2). For this compari-
son, between LGG IDH mutant 1p/19q codel (ODG)
and non-codel (DA), we have performed a Wilcoxon-
rank sum test which yielded 160,288 CpG probes signifi-
cantly differentially methylated in ODG versus DA.
Next, a stringent cutoff of 0.2 absolute Δβ value was
applied that showed 2817 significantly differentially
methylated (627 CpGs were hypomethylated and 2190
CpGs were hypermethylated in ODG; Additional file 1:
Table S4) CpG probes in mutant as compared to WT
IDH LGG patients. The TCGA 450K human methylation

dataset for LGG patients with 1p/19q codel (n = 172)
and non-codel (n = 261) was randomized and 50% of
each of the two classes formed the training set, and the
remaining 50% was used as the test set. We randomized
TCGA dataset ten times to obtain ten different training
sets and their corresponding test sets. After performing
PAM on each of the ten training sets, the training set
that gave least error with minimum number of CpGs
was selected for further studies. This process gave a set
of 14 discriminatory CpG probes which were further
tested through SVM and subset analysis before testing
on the test set and external validation set (Fig. 2;
Table 3).
Likewise, the same work flow was followed to identify

a methylation-based signature that could distinguish the
GBM IDH WT from mutant samples (Fig. 2). In this
comparison, between GBM IDH mutant and WT patient
samples, we have performed a Wilcoxon-rank sum test
which yielded 69,669 CpG probes significantly differen-
tially methylated in mutant versus WT. Next, a stringent
cutoff of 0.2 absolute Δβ value was applied that showed
259 significantly differentially methylated (33 CpGs were
hypomethylated and 226 CpGs were hypermethylated in
mutant; Additional file 1: Table S5) CpG probes in mu-
tant as compared to WT IDH GBM patients. The TCGA
450K human methylation dataset for GBM patients with
IDH mutation (n = 7) and WT (n = 117) was randomized
and 50% of each of the two classes formed the training
set, and the remaining 50% was used as the test set. We
randomized TCGA dataset ten times to obtain ten dif-
ferent training sets and their corresponding test sets.
After performing PAM on each of the ten training sets,
the training set that gave least error with minimum
number of CpGs was selected for further studies. This
process gave a set of 13 discriminatory CpG probes
which were further tested through SVM and subset ana-
lysis before testing on the test set and external validation
set (Fig. 2; Table 4).

Prediction Analysis of Microarray (PAM)
To identify a list of a minimal set of signatory probes
from the significantly differentially methylated CpGs be-
tween each compared groups, Prediction Analysis of Mi-
croarrays (PAM) using the package pamr available in R
software (version 3.1.0) were applied. PAM uses nearest
shrunken centroid method for classifying samples. This
method “shrinks” each of the class centroids towards the
overall centroid by the threshold. In case of selecting a
signature, it is ideal to choose a threshold value that
would achieve a set of minimum number of genes with
maximum accuracy thereby least error. For preparing in-
put files for PAM analysis, the list of significantly meth-
ylated probes between each compared groups across all
the tumor samples was randomized and 50% of each of
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the two classes formed the training set, and the
remaining 50% was used as the test set. This
randomization was performed ten times which resulted
into ten different compositions of training set and their
corresponding test set. Thereafter, each of these ten
training sets was subjected to PAM analysis that uses
10-fold cross-validation to identify a predictive signature.
Ten different training sets that were used to construct
the PAM classifier resulted in ten non-identical predict-
ive signatures, one for each iteration. The most promis-
ing signature which had the maximum training and test
set accuracies was chosen. We also performed an in-
ternal cross-validation on the training set of the most
promising signature as predicted by PAM.

Internal cross-validation using Support Vector Machine
(SVM) and random subset sampling
For internal cross-validation, we have used Support
Vector Machine (SVM) [21]. Many prediction methods
use SVM for classification of dataset into two or more
classes. For a given set of binary classes training exam-
ples, SVM can map the input space into higher dimen-
sional space and seek a hyperplane to separate the
positive data examples from the negative ones with the
largest margin. SVM-based internal cross-validation is
used for the training sets of 1. LGG IDH mutant versus
WT, 2. diffuse astrocytoma versus oligodendroglioma,
and 3. GBM IDH mutant versus WT. For each of the
abovementioned cases, the samples were divided ran-
domly into five subgroups containing equal number of
the respective samples. These five subgroups of each
cases, example LGG IDH mutant and WT, were made
into five groups where each group contained one sub-
group of LGG IDH mutant and one subgroup of LGG
IDH WT samples. Consequently, one group of LGG
IDH WT plus LGG IDH mutant was considered as a
test set while the rest four groups were considered as
training set and this is referred to as a “fold.” In this
way, SVM models were built five times to give fivefolds,
wherein every group was considered as a test set and the
remaining groups as training set. The accuracy for each
fold was checked by this method.
The predictive accuracy of the three signatures was

also analyzed in a subset of the following cases: 1. LGG
IDH mutant (217) versus WT (n = 49), 2. diffuse astrocy-
toma (n = 131) versus oligodendroglioma (n = 86), and 3.
GBM IDH mutant (n = 4) versus WT (n = 59) by random
subset sampling. PAM was used to predict the respective
accuracies in the random subset sampling.

Principal component analysis
Principal component analysis (PCA) uses orthogonal
transformation to convert a set of variables into a set of
values of linearly uncorrelated variables that are called

principal components. The number of principal compo-
nents can be less than or equal to the number of original
variables. The first two principal components account
for the largest possible variation in the dataset. PCA was
performed using R package (version 3.1.0), on the train-
ing and test sets to know how well the identified methy-
lation signature classifies LGG IDH mutant and WT.
This process was repeated for identifying a methyla-

tion signature between IDH mutant DA and ODG and
between GBM IDH mutant and WT (a cutoff of 0.2 ab-
solute Δβ was used here to identify significantly differ-
ently methylated probes between the two classes).
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