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Abstract

Background: Differentially methylated regions (DMRs) within DNA isolated from whole blood can be used to
estimate the proportions of circulating leukocyte subtypes. We use the term “immunomethylomics” to describe the
application of these immune lineage DMRs to studying leukocyte profiles. Here, we applied this approach to peripheral
blood DNA from 72 glioma patients with molecularly defined brain tumors, representing common patient groups with
defined characteristic survival times and risk factors. We first estimated the proportions of leukocyte subtypes in samples
using deconvolution algorithms with reference DMR libraries from isolated leukocyte populations and Illumina 450K DNA
methylation data. Then, we calculated the neutrophil to lymphocyte ratio (NLR) using methylation-derived cell
composition estimates (mdNLR). The NLR is considered an indicator of immunosuppressive cells in cancer patients.

Results: Elevated mdNLR scores were observed in glioma patients compared to mdNLR values of published controls.
Significantly decreased survival times were associated with mdNLR ≥ 4.0 in Cox proportional hazards models adjusted for
age, gender, tumor grade, and molecular subtype (HR 2.02, 95% CI, 1.11–3.69). We also identified five myeloid-related
CpGs that were highly correlated with the mdNLR (adjusted R2 ≥ 0.80). Each of the five myeloid CpG loci was associated
with survival when adjusted for the above covariates and offer a simplified approach for utilizing fresh or archived
peripheral blood samples for interrogating a very small number of methylation markers to estimate myeloid immune
influences in glioma survival.

Conclusions: The mdNLR (based on DNA methylation) is a novel candidate methylation biomarker that represents
immunosuppressive myeloid cells within the blood of glioma patients with potential application in clinical trials and
future epidemiologic studies of glioma risk and survival.
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Background
About 14,000 Americans are diagnosed each year with
glioma, the most common primary malignant brain
tumor [1]. Traditional histopathological criteria, includ-
ing age and certain tumor markers, are currently being
used to assess glioma patient prognosis [2]. Glioblastoma
(GBM) patients, classified by the World Health
Organization (WHO) as grade IV glioma, have a dismal

prognosis with an estimated median survival of only
14.6 months. Younger patients and those with isocitrate
dehydrogenase (IDH) mutated tumors have more favor-
able survival. The standard therapies for high-grade
glioma, which include surgery, temozolomide (TMZ)
chemotherapy, and radiation, have led to relatively mod-
est improvements in survival [3]. Previously, we demon-
strated that three key molecular features of glioma,
telomerase (TERT) promoter mutation, IDH mutation,
and 1p/19q codeletion, are sufficient to create an inte-
grated molecular classification that defines five principal
groups of glioma with characteristic distributions of age at

* Correspondence: John.Wiencke@ucsf.edu
†Equal contributors
1Department of Neurological Surgery, University of California San Francisco,
1450 3rd Street, San Francisco, CA 94158-0520, USA
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Wiencke et al. Clinical Epigenetics  (2017) 9:10 
DOI 10.1186/s13148-017-0316-8

http://crossmark.crossref.org/dialog/?doi=10.1186/s13148-017-0316-8&domain=pdf
mailto:John.Wiencke@ucsf.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


diagnosis, clinical behavior, acquired genetic alterations,
and associated germline variants [4]. Among these groups,
IDH mutant only and TERT mutant only tumors are the
most common and comprise about 75% of adult glioma
patients [4].
While the molecular classification of tumors has

substantially improved our understanding of glioma
prognosis, immune factors are notably absent in existing
prognostic models. This omission is significant as im-
mune evasion is a recognized hallmark of cancer [5],
and there is abundant evidence that glioma patients suf-
fer systemic immune defects, with the most profound
alterations occurring in GBM patients [6–10]. Recent
studies have emphasized the important role of developmen-
tally immature and aberrantly activated myeloid-derived
cells as contributing to cancer immunosuppression and
adversely affecting patient survival [11–13]. Furthermore,
immune interventions represent a potentially powerful new
therapeutic approach in glioma [14, 15].
The best methods to assess altered myeloid populations

or systemic immunosuppression, more generally, are still
evolving [16] and, as a result, large-scale studies are
lacking. However, the peripheral blood neutrophil to
lymphocyte ratio (NLR), which can be derived using the
common five-part white blood cell differential (neutro-
phils, basophils, eosinophils, monocytes, lymphocytes),
has emerged as a surprisingly robust marker of cancer
associated inflammation [17]. Increases in the blood NLR
have been remarkably consistent in their association with
poor cancer survival. A recent meta-analysis including
100 independent studies encompassing over 40,000 sub-
jects demonstrated that an elevated NLR was a statistically
significant predictor of poor overall survival, cancer-
specific survival, as well as progression free and disease
free survival, even after adjustment for established risk
predictors [18]. There are four studies showing shorter
survival times in glioma patients with an elevated NLR
[19–22]. Importantly, however, no study has taken into
account the molecular features of glioma in conjunction
with the NLR or other immune factors.
In this study, our goal was to apply a new epigenetic ap-

proach to immune profiling to explore myeloid-related
blood markers in glioma survival. Specifically, we examined
the peripheral blood DNA methylation status of glioma
cases using bioinformatic algorithms that deconvolute the
complex methylation signature of whole blood into its
component cell compartments [23–26]. This approach to
immune studies is based on recent epigenetic discoveries
showing that differentially methylated regions (DMRs) pro-
vide highly specific and quantitative markers of immune
cell profiles [27, 28]. Recently, we developed and validated
an algorithm to estimate the NLR from 450K methylation
data (methylation-derived NLR; mdNLR) [29]. Our results
showed strong agreement between mdNLR and cytological

NLR, and elevated mdNLR was significantly associated with
diminished patient survival times in head and neck
squamous cell carcinoma and bladder cancer, as well as
breast and ovarian cancer risk [29], paralleling the now
considerable literature on the relationship between
cytological NLR and cancer survivorship [18]. Here, we
studied the association of the mdNLR with survival
among glioma patients.
Because altered myeloid differentiation is implicated in

immune alterations in glioma, we also explored the idea
that associations of mdNLR in glioma may be linked to
myeloid-specific developmental CpG loci. We identified
myeloid versus lymphoid specific CpGs on the 450K
array that strongly correlate with the mdNLR. This pro-
vides important evidence that the NLR is a surrogate
marker of myeloid suppression. Consequently, both the
mdNLR and the myeloid single CpGs are potential
markers of skewed myeloid profiles that may be useful
in characterizing immune defects associated with
survival in glioma.

Methods
Patient samples
Patients were chosen from the University of California
San Francisco (UCSF) Adult Glioma Study (AGS) who
had both archival blood and tumor marker data [30].
AGS participants represent primary glioma patients; no
recurrent or secondary GBM cases are included.
Seventy-two cases were selected from the two most
prevalent molecular subtypes of glioma [4] (i.e., cases
with IDH mutation only or TERT promoter mutation
only). Samples from cases aged 40 to 59 were selected as
follows: all available non-GBMs and IDH-only GBMs
were included. TERT-only GBMs were chosen to match
the ages of both the IDH-only GBMs and the TERT-
only non-GBMs. Blood samples were collected from
patients a median of 100 days after they were histologi-
cally diagnosed. Clinical information was collected on
patient treatments including temozolomide (TMZ)
chemotherapy, radiation therapy, extent of surgery, and
steroid use at the time of blood sampling. The anticoagu-
lated whole blood was processed, and DNA was isolated
and bisulfite converted as previously described (27).

Quality control and preprocessing of the DNA
methylation data
Illumina 450K arrays were run by the UCSF Human
Genomics core. Preprocessing and quality control was
accomplished using the minfi Bioconductor package
[31]. To ensure high-quality methylation data, CpG loci
having a sizable fraction (>25%) of detection p values
above a predetermined threshold (detection P > 10E–5)
were excluded [32]. Subset Quantile Within Array
(SWAN) normalization was performed for type 1/2
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probe adjustment [33]. The presence of technical
sources of variability induced by plate and/or BeadChip
was examined using principal components analysis
(PCA), and the top K principal components [34] were
examined in terms of their association with plate and
BeadChip. If plate and/or BeadChip was found to be sig-
nificantly associated with any of the top K principal
components, we applied ComBat method [35] for
normalization using the sva Bioconductor package.

Cell mixture deconvolution analysis
Using the preprocessed and normalized methylation data,
we applied an optimized reference-based cell mixture
deconvolution methodology [28] to gain insight into the
cellular composition of the samples considered here. Spe-
cifically, the proportions of CD4+ T cells, CD8+ T cells, B
cells, natural killer (NK) cells, monocytes, and granulo-
cytes were estimated for each sample using the function
“estimateCellCounts” in the minfi Bioconductor package
using an optimized reference library set of CpGs.

Computing the methylation-derived neutrophil
lymphocyte ratio (mdNLR)
Estimation of the mdNLR was carried out as previously
described [29]. Briefly, the method requires three main
steps: (i) identify differentially methylated CpGs among
leukocyte subtypes, (L-DMRs), (ii) perform cell mixture
deconvolution to estimate the proportion of leukocyte
subtypes using L-DMRs identified in step 1, and (iii)
compute the ratio of the predicted proportion of neutrophil
granulocytes to lymphocytes. The mdNLR was computed
by taking the ratio of predicted granulocyte and lymphocyte

fractions, mdNLRi ¼ ω̂ Gran;ið Þ
ω̂ Lymph;ið Þ; 0≤mdNLRi <∞. The

mdNLR scores are based on beta values using 300 L-DMR
CpGs [28]. A publicly available implementation of
this method is available in the IDOL R package
(https://www.r-project.org/).1

Statistical analyses of the mdNLR and clinical outcomes
Associations between mdNLR and clinical covariates
were assessed using either logistic regression or linear
regression models. Cox proportional hazards regression
models were used to examine the association between
mdNLR and survival time and were fit using the “coxph”
function in the survival R package. Survival models were
adjusted for established risk predictors and potential
confounders, including age, gender, histological subtype
(GBM versus non-GBM), and IDH/TERT mutation
status (IDH-only mutation versus TERT-only mutation).
The proportionality assumption was assessed by plotting
the scaled Schoenfeld residuals against time, and the
“cox.zph” function in the survival R package was used
for testing the proportionality of each predictor included

in our survival models [36]. In our survival analyses,
mdNLR was modeled both as a continuous predictor
and by dichotomizing subjects into high and low
mdNLR groups. The binary cut point of mdNLR >4 is
based on previous studies [19]. We also compared the
performance of different survival models that included
known risk factors compared with analyses including
mdNLR and single locus CpGs. Three metrics were
computed using the packages survival and survAUC to
compare the performance of these models: concordance
index (c-index), the Gerds and Schumacher Brier score,
and the Song and Zhou [37] time-dependent area under
the receiver operator characteristic curve (tAUROC)
[38]. Log-rank tests were used to judge differences
between the experimental and baseline model. The
baseline model contained patient age, gender, tumor
grade, and mutation status (TERT mutant only vs IDH
mutant only).

Identification of myeloid-specific single locus markers of
the mdNLR
While the mdNLR requires 300 CpGs to estimate the
neutrophil lymphocyte ratio (29), we hypothesized that
the NLR (and the mdNLR) is a biomarker of the known
influx of myeloid-derived suppressor cells into the per-
ipheral blood that occurs with the development of a new
cancer (11), and as a result of this, reasoned that there
may exist individual influential CpGs arising during
myeloid differentiation that could serve as surrogates for
the mdNLR. To test this hypothesis, we first sought to
identify myeloid-specific markers. The M values of 54
samples from the Reinius dataset (excluding the six
whole blood samples, GSE35069 [39]) were modeled ac-
cording to if they were predominantly myeloid or
lymphoid cells, adjusting for the proportion of the blood
cells in the samples as measured by flow cytometry. The
top 100 loci were selected using the RnBeads automatic
rank cutoff approach. A second model then evaluated
the relationship between the mdNLR as the outcome
and the top 100 myeloid-specific loci to obtain a reduced
list of methylation-derived mdNLR surrogates. For vari-
ance stabilization, beta values were converted to M
values and were modeled assuming linear, quadratic, and
cubic relationships with survival time; we then com-
puted adjusted R2 values to assess the correlation of each
methylation site. We first modeled the 100 myeloid-
specific loci using the methylation data from subjects in
this study and then repeated the models in the Hannum
[40] [GSE40279] and Liu [41] [GSE42861] blood methy-
lation datasets. For the top 10 models, the adjusted R2

ranged between 40–86%. Five loci were consistently
found to obtain an adjusted R2 over 80% in all three
datasets. Each of the five loci was markedly
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demethylated in myeloid compared to lymphoid cells
and stem cells (using ENCODE resources).

Results
Neutrophil lymphocyte ratio in glioma patients assessed
by immunomethylomics
The study sample sizes, clinical characteristics, and avail-
able demographic/epidemiological data are given in
Table 1. Leukocyte cell composition of whole blood was
calculated with our validated algorithm and optimized
reference libraries using the IDOL procedure [28], Add-
itional file 1: Figure S1. Combining the myeloid and
lymphocytic subtypes allowed the calculation of the
mdNLR. The mdNLR scores among glioma cases were
then compared with a large public database of blood
methylation data collected on 656 non-cancer adults
[40]. Figure 1a compares the distributions of mdNLR
among glioma cases and the non-cancer comparison
group; the median mdNLR of glioma patients was
elevated compared to the non-cancer group. Higher gli-
oma tumor grade was associated with increased mdNLR
values (panel B), but mdNLR scores were similar among
cases whose tumors contained IDH1 vs TERT promoter
mutation (panel C).

Association of mdNLR with glioma survival times
Median survival in cases with mdNLR < 4 was 52 months
compared to those with elevated mdNLR scores;
22 months (Fig. 1d). Kaplan-Meier survival curves were
further stratified by histopathology (GBM vs non-GBM)
and suggested shorter survival times among GBM cases,
although sample sizes are limited (Fig. 1e). Cox propor-
tional hazards models that included known prognostic

factors (age, grade, mutation status) indicated significant
association of a high mdNLR (>4) with an increased risk
of death; HR 2.02, 95% CI, 1.11–3.69, P = 0.02 (Table 2).
A Cox model including chemotherapy and steroid use
suggests that mdNLR is associated with survival time,
independent of therapy; HR 1.84, 95% CI, 1.00–3.38,
P = 0.049 (Additional file 2: Table S1).
Glioma grading was based on WHO 2007 criteria;

however, since we know IDH mutation and 1p19q code-
letion status, we can reclassify these cases using the new
WHO 2016 brain tumor classification [42]. Based on the
WHO 2016 criteria, two anaplastic oligodendroglioma
or oligoastrocytomas cases would have been classified as
GBM instead of non-GBM due to having evidence of
microvascular proliferation. This reclassification would
not have substantially altered the results of this analysis.

Association of single CpG myeloid differentiation loci
with mdNLR and survival
Candidate loci representing myeloid-specific CpGs were
identified, and the top 100 included loci hypomethylated
in myeloid cells compared to lymphoid cells and only a
few loci that were hypermethylated in myeloid cells
Fig. 2. Genes associated with these myeloid-specific loci
are summarized in Table 3. Five loci were chosen that
showed very strong correlation with the mdNLR across
three independent blood DNA methylation datasets,
Fig. 3. Among the different models examined, the quad-
ratic form best fit the regression of CpG methylation
and mdNLR. Table 4 describes the methylation levels of
these five loci according to glioma patient characteristics
(tumor grade, mutation status, NLR status). The data
indicate the strong association of each individual loci
with patient NLR status.
We compared the performance of survival models that

contain the mdNLR and found a significant difference
from the base model which did not contain the mdNLR
and a modest increase in the concordance score and
Brier score (Table 5). Models that individually included
one of each of the five myeloid-specific differentiation
CpGs revealed that the loci were significant compared to
the base model and produced concordance and Brier’s
scores equivalent to the mdNLR. As similar results were
found when any of the five loci were included, we
included only one of them (cg00901982) in Table 5. We
also examined models containing the mdNLR in
addition to each of the five loci (Table 6). As expected,
when both variables are included in the models, little
additional variance is explained.

Discussion
Shifts in the distribution and numbers of blood leuko-
cytes as well as the emergence of aberrant myeloid cells
with immunosuppressive properties are important

Table 1 Summary of patient characteristics

Number 72

Median age (IQR) 47 (44, 54) years

Sex

Male 72%

Female 28%

Histology and grade

Astro/oligo/oligoastro gr II–III 54%

Glioblastoma multiforme gr IV 46%

Mutation status

TERT promoter only 58%

IDH-only 42%

Methylation-derived NLR (mdNLR)

mdNLR < 4 (%) 61%

mdNLR ≥ 4 (%) 39%

Length of follow-up 5–190 months

Median survival time (IQR) 29 (13, 65) months
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predictors of cancer patient survival [11–13]. The simple
NLR in the whole blood has received a great deal of
attention as a replicated marker of cancer inflammation
linked to poor survival [18]. Because the NLR reflects
the relative balance of the myeloid and lymphocytic line-
ages in peripheral blood, it is sensitive to the altered

myelopoiesis arising in chronic inflammation and cancer.
A main finding of this study is that DMRs that distin-
guish leukocyte subtypes can be used to estimate the
NLR ratio and that this epigenetically derived metric,
like the cytological NLR, is associated with glioma
occurrence and survival times. Our observation of

Fig. 1 a Comparison of the distributions of mdNLR among glioma cases and a non-cancer comparison group. b Boxplot comparing mdNLR of glioma
patients by tumor grade. c Boxplot comparing mdNLR of glioma patients by tumor molecular subtype. d Kaplan-Meier survival curves stratified by
mdNLR (<4 vs > = 4) e Kaplan-Meier survival curves stratified by histopathology (GBM vs non-GBM) and mdNLR (<4 vs > = 4)

Table 2 Cox proportional hazards survival models including mdNLR, age, grade, and tumor mutation status

n deceased Survival years Univariate models Multivariate model

Number Mean Median HR (95% CI) p value HR (95% CI) p value

mdNLR < 4
mdNLR > = 4

44
28

35
23

4.8
3.1

4.3
1.8

Referent group
1.78 (1.03–3.07) 0.038

Referent group
2.02 (1.11–3.69) 0.022

GBM
non-GBM

33
39

32
26

2.9
5.3

1.7
5.3

Referent group
0.48 (0.28–0.81) 0.006

Referent group
1.06 (0.56–2.00) 0.859

IDH only
TERT only

30
42

18
40

6.6
2.4

7.2
1.4 4.19 (2.34–7.48) <0.0001

referent group
4.83 (2.35–9.93) 0.00002

Age (continuous) 0.97 (0.92–1.02) 0.274

All covariates modeled met proportionality assumptions
HR hazard ratio, CI confidence interval
MdNLR methylation-derived NLR (neutrophil to lymphocyte ratio)
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elevated mdNLR values in GBM patients compared to
controls is consistent with previous studies [18].
Although the mdNLR is less dramatically elevated in
non-GBM compared with GBM cases, the data suggests
alterations in some lower grade patients. Our sample of
glioma patients was restricted to tumor subtypes
containing either IDH or TERT mutations exclusively.
After adjustments for these molecular features and other
prognostic factors, the elevated mdNLR was a significant
prognostic indicator of shorter survival times. Thus, the
immunomethylomic approach to the evaluation of the
NLR holds considerable promise in immune profiling.
Currently, there is intense interest in multiscale assess-
ment of immune function in cancer patients receiving
traditional treatments and new immunotherapies [43].
Immunomethylomics can readily provide cell ratios as in
the mdNLR and has the potential to identify aberrant
epigenetic subsets of immune cells.
When we evaluated the performance of multivariate

survival models with or without the mdNLR, we found a
significant but modest improvement of model fit by
inclusion of the mdNLR. This is not unexpected as the
molecular subtypes selected for the current study repre-
sent very divergent prognostic groups. Survival for
patients with IDH-only mutant glioma is much longer
compared with those harboring TERT promoter mutation
only tumors. Thus, survival models containing these mu-
tation factors explain a large degree of variation in survival
times and improvements in predictive performance above

Fig. 2 Identification of myeloid and lymphoid specific CpG probes.
Scatterplot depicting Illumina 450K methylation beta values among
isolated lymphocyte subtypes (X-axis: T cells, B cell, NK cells) and
myeloid subtypes (Y-axis; granulocytes, monocytes). The lower right
quadrant identifies loci that are unmethylated in myeloid cells and
densely methylated in lymphocytes

Table 3 Top five myeloid-specific loci

Chromosome MAPINFO hg19
location

Strand Annotated gene Gene located on
the same or opposite
transcription strand

SNP 10 bases
to hybridization

MAF Genomic
context

Infinium Enhancer

cg25938803 chr2 43767347 + THADA Opposite rs183844032a 0.0002 Body II

Sequenceb

GCACTACAGCCAGTCACCAGCAATGACTGCAAGTAACTCTAGGACACTGACGCCTATTTGATTTGGAAGAGAATAAGGAACATAATGATGCCTGAAATGTC

cg00901982 chr2 70257298 − PCBP1-AS1 Same rs533928090 0.0002 Body II

Sequenceb

GACATTTCAGGCATCATTATGTTCCTTATTCTCTTCCAAATCAAATAGGCGTCAGTGTCCTAGAGTTACTTGCAGTCATTGCTGGTGACTGGCTGTAGTGC

cg01591037 chr12 15134481 − PDE6H Opposite rs144778897a 0.001597 3UTR II

Sequenceb

GACATTTCAGGCATCATTATGTTCCTTATTCTCTTCCAAATCAAATAGGCGTCAGTGTCCTAGAGTTACTTGCAGTCATTGCTGGTGACTGGCTGTAGTGC

cg10456459 chr12 22843015 + ETNK1 Same rs373083641 0.0002 3UTR II True

Sequenceb

GCACTACAGCCAGTCACCAGCAATGACTGCAAGTAACTCTAGGACACTGACGCCTATTTGATTTGGAAGAGAATAAGGAACATAATGATGCCTGAAATGTC

cg03621504 chr12 116571240 + MED13L Opposite N/A N/A Body II

Sequenceb

GCACTACAGCCAGTCACCAGCAATGACTGCAAGTAACTCTAGGACACTGACGCCTATTTGATTTGGAAGAGAATAAGGAACATAATGATGCCTGAAATGTC

MAF minor allele frequency
aSNP on hybridization site
bSequence corresponding to 50 bases upstream and 50 bases downstream of the CpG location based on the GRCh37/hg19 build
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the base model were modest in size. This is not uncom-
mon in cancer studies. Nonetheless, the direction of the
association of the mdNLR with survival is consistent with
previous studies in glioma and other solid tumors that im-
plicate myeloid factors in cancer inflammation. However,
a caveat to this interpretation is that decreases in lympho-
cytes could drive increases in the mdNLR without alter-
ations in the myeloid compartment. While the mdNLR is
affected by either increased myeloid or decreased lympho-
cyte counts, the individual myeloid-specific differentiation
loci are less susceptible to this effect of lymphocyte deple-
tion. It is of interest therefore, that each of the five
myeloid-specific loci performed similarly to the mdNLR
and produced largely comparable performance metrics in
multivariate analyses.
The single CpG sites that correlated with the mdNLR

are not located in classic promoter regions and their
functional significance is unknown. Further work is
needed to develop a deeper understanding of the poten-
tial biological significance of the five loci. It will be of
interest to know whether the single CpG myeloid loci
identified in this study are related to the immature and
aberrant phenotype of MDSCs. The current state of
immunomethylomics does not allow for the direct esti-
mation of MDSCs that are hypothesized to be the
drivers of immunosuppression associated with elevated
NLR. Thus, future discovery studies of the methylomes
of isolated MDSCs that identify their unique DMR
repertoire are needed. Specific MDSC defining DMRs

can then be added to the reference libraries of normal
neutrophil and monocyte cell types and used for cell
profiling. Until that time, the current markers of leuko-
cytes, mdNLR, and myeloid differentiation are easily
implemented in clinical studies and large population
studies. Unprocessed peripheral blood and archival
samples are suitable for immunomethylomic profiling.
The single CpG myeloid differentiation markers can
be used in single locus quantitative assay formats
without the requirement for extensive array-based
analysis.

Conclusions
The ratio of neutrophils to lymphocytes in blood has
been associated with immune suppression and decreased
survival times in multiple solid tumors. Based on
immune cell-specific DMRs and validated cell deconvo-
lution algorithms, we estimated the NLR in blood from
glioma patients and found elevated mdNLR values in
glioma patients compared to a published control group.
The patient mdNLR scores were increased in patients
with grade IV tumors compared with grade II/III. High
mdNLR scores were significantly associated with shorter
survival times. We explored the contribution of myeloid
differentiation loci in driving the mdNLR and identified
candidate single (myeloid-associated) gene loci that were
highly correlated with the mdNLR. These loci likely
represent myeloid differentiation-specific demethylation
events, consistent with the hypothesis that the NLR and

Fig. 3 Correlation of myeloid locus with mdNLR
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Table 5 Cox proportional hazards survival models including, age, sex, grade, mutation status, and either mdNLR or cg00901982
(linear and quadratic terms)

Baseline model Baseline + mdNLR Baseline + CpG Baseline + CpG + CpG2

n (%) Median (IQR) HR (95%CI) HR (95%CI) HR (95%CI) HR (95%CI)

Age 47 (44, 54) 0.99 (0.94, 1.05) 0.97 (0.92, 1.03) 0.99 (0.94, 1.04) 0.97 (0.92, 1.03)

Female 20 (28) Referent group Referent group Referent group Referent group

Male 52 (72) 0.75 (0.41, 1.38) 0.74 (0.40, 1.35) 0.74 (0.40, 1.35) 0.69 (0.37, 1.26)

mdNLR >4 28 (39) Referent group

mdNLR ≤4 44 (61) 0.49 (0.27, 0.90)

IDH only 30 (42) Referent group Referent group Referent group Referent group

TERT only 42 (58) 3.96 (1.98, 7.94) 4.56 (2.20, 9.43) 4.25 (2.09, 8.64) 4.65 (2.25, 9.62)

GBM 33 (46) Referent group Referent group Referent group Referent group

Non-GBM 39 (54) 0.92 (0.50, 1.71) 1.02 (0.54, 1.92) 0.98 (0.52, 1.82) 0.90 (0.48, 1.70)

cg00901982* 26.1 (21.4, 31.2) 0.80 (0.52, 1.22) 0.36 (0.04, 3.15)

cg009019822* 29 (3.52, 237)

Concordance 0.71 (SE = 0.04) 0.73 (SE = 0.04) 0.72 (SE = 0.04) 0.74 (SE = 0.04)

Brier score 0.1508 0.1506 0.1511 0.1468

Lrtest vs baseline model 0.02 0.29 0.01

Lrtest vs baseline +mdNLR model <0.0001 0.06

Lrtest model linear (CpG) vs quadratic (CpG + CpG2) model 0.01

p values <0.05 are highlighted in bold font
All covariates modeled met proportionality assumptions
HR hazard ratio, CI confidence interval, mdNLR methylation-derived neutrophil lymphocyte ratio, Lrtest likelihood ratio test
*Per every 10% increase in methylation

Table 6 Cox proportional hazards survival models including, age, sex, grade, mutation status, mdNLR and cg00901982 (linear and
quadratic terms)

Baseline model Baseline + NLR Baseline +mdNLR + CpG Baseline +mdNLR + CpG + CpG2

n (%) Mean (sd) HR (95%CI) HR (95%CI) HR (95%CI) HR (95%CI)

Age 47 (44, 54) 0.99 (0.94, 1.05) 0.97 (0.92, 1.03) 0.97 (0.92, 1.03) 0.97 (0.92, 1.02)

Female 20 (27.8) Referent group Referent group Referent group Referent group

Male 52 (72.2) 0.75 (0.41, 1.38) 0.74 (0.4, 1.35) 0.74 (0.41, 1.36) 0.7 (0.38, 1.29)

mdNLR ≥4 28 (38.9) Referent group Referent group Referent group

mdNLR <4 44 (61.1) 0.49 (0.27, 0.9) 0.40 (0.17, 0.92) 0.69 (0.26, 1.81)

IDH only 30 (41.7) Referent group Referent group Referent group Referent group

TERT only 42 (58.3) 3.96 (1.98, 7.94) 4.56 (2.20, 9.43) 4.49 (2.16, 9.35) 4.73 (2.26, 9.88)

GBM 33 (45.8) Referent group Referent group Referent group Referent group

Non-GBM 39 (54.2) 0.92 (0.50, 1.71) 1.02 (0.54, 1.92) 1.00 (0.53, 1.90) 0.92 (0.48, 1.76)

cg00901982* 26.1 (21.4, 31.2) 1.20 (0.72, 1.99) 0.91 (0.03, 24.7)

cg009019822* 15.9 (1.12, 225)

Concordance 0.71(SE = 0.04) 0.73(SE = 0.04) 0.74(SE = 0.04) 0.74(SE = 0.04)

Brier score 0.1508 0.1506 0.1504 0.1473

Lrtest vs baseline model 0.02 0.06 0.02

Lrtest vs baseline +mdNLR model 0.49 0.13

Lrtest model linear (CpG) vs quadratic (CpG + CpG2) model 0.06

p values <0.05 are highlighted in bold font
All covariates modeled met proportionality assumptions
HR hazard ratio, CI confidence interval, mdNLR methylation-derived neutrophil lymphocyte ratio, Lrtest likelihood ratio test
*Per every 10% increase in methylation
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mdNLR are biomarkers of myeloid suppression. Individ-
ual myeloid differentiation loci were tested in multivari-
ate survival analyses and found to perform as well as the
mdNLR in improving survival predictions. Single mye-
loid differentiation loci provide a simpler and cheaper
alternative to the mdNLR, which requires complex array
data. Immunomethylomics may be an alternative to
conventional cell analysis in profiling glioma risk and
survival factors.

Endnote
1The IDOL R-package has been submitted to the

Comprehensive R Archive Network (CRAN) and is
available through Github. Software is also available by
request.

Additional Files

Additional file 1: Figure S1. Leukocyte cell composition of the whole
blood calculated with our validated algorithm and optimized reference
libraries using the IDOL procedure. (See Additional file 1: Figure S1.png).
(PNG 17 kb)

Additional file 2: Table S1. Cox proportional hazards survival models
including mdNLR, age, grade, mutation status, and chemotherapy and
dexamethasone. (see Additional file 2: Table S1.xlsx). (XLS 7 kb)
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