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Abstract

Background: The Pap smear has remained the foundation for cervical cancer screening for over 70 years. With
advancements in molecular diagnostics, primary high-risk human papillomavirus (hrHPV) screening has recently
become an accepted stand-alone or co-test with conventional cytology. However, both diagnostic tests have
distinct limitations. The aim of this study was to determine the association between HPV genotypes and cellular
epigenetic modifications in three grades of cervical cytology for screening biomarker discovery.

Methods: This prospective, cross-sectional study used residual liquid-based cytology samples for HPV genotyping
and epigenetic analysis. Extracted DNA was subjected to parallel polymerase chain reactions using three primer sets
(MY09/11, FAP59/64, E6-E7 F/B) for HPV DNA ampilification. HPV+ samples were genotyped by DNA sequencing.
Promoter methylation of four candidate tumor suppressor genes (adenylate cyclase 8 (ADCYS8), cadherin 8, type 2
(CDH8), MGMT, and zinc finger protein 582 (ZNF582)) out of 48 genes screened was quantified by bisulfite-
pyrosequencing of genomic DNA. Independent validation of methylation profiles was performed by analyzing data
from cervical cancer cell lines and clinical samples from The Cancer Genome Atlas (TCGA).

Results: Two hundred seventy-seven quality cytology samples were analyzed. HPV was detected in 31/100 (31 %)
negative for intraepithelial lesion or malignancy (NILM), 95/100 (95 %) low-grade squamous intraepithelial lesion
(LSIL), and 71/77 (92 %) high-grade squamous intraepithelial lesion (HSIL) samples. The proportion of IARC-defined
carcinogenic HPV types in sequenced samples correlated with worsening grade: NILM 7/29 (24 %), LSIL 53/92

(58 %), and HSIL 65/70 (93 %). Promoter methylation of ADCY8, CDHS8, and ZNF582 was measured in 170 samples:
NILM (N =33), LSIL (N=70), and HSIL (N=67) also correlated with worsening grade. Similar hypermethylation
patterns were found in cancer cell lines and TCGA samples. The combination of four biomarkers, i.e., HPV genotype
and three-gene promoter methylation, predicted HSIL (AUC 0.89) better than HPV alone (AUC 0.74) by logistic
regression and probabilistic modeling.

Conclusions: HPV genotype and DNA methylation of ADCY8, CDHS8, and ZNF582 are correlated with cytological grade.
Collectively, these biomarkers may serve as a molecular classifier of Pap smears.
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Background

In 1941, George Papanicolaou published his landmark
paper on the use of vaginal smears for the diagnosis of
cervical cancer [1]. The road to his discovery and
popularization of the Papanicolaou (Pap) smear was a
four-decade-long arduous journey starting with experimen-
tation on guinea pigs, then women attending the clinic of
Cornell Medical College [2]. Since the development and
systemization of cytomorphology for cancer detection by
Papanicolaou in 1948, the Pap smear has remained the
foundation for cervical cancer screening worldwide. Today,
however, low-resource countries continue to lack the infra-
structure to sustain a cytology-based screening program,
i.e, rapid transport of smears, quality laboratory services,
and trained cytopathologists. With ~528,000 new cases
worldwide each year, the highest incidence rates of cervical
cancer remain in the unscreened, resource-limited regions
of Africa, Latin America, Southeast Asia, and the Western
Pacific [3].

Since the isolation and cloning of human papillomavirus
(HPV)-16 from cervical carcinoma by zur Hausen et al. in
1983, the HPV is now recognized as a necessary cause of
invasive cervical cancer with a prevalence of 99 % in global
samples [4, 5]. With advancements in molecular diagnostics
and automation, primary high-risk HPV (hrHPV) cervical
screening and alternative strategies that supplant the
resource-demanding cytology-based model, such as visual
inspection with acetic acid (VIA), have risen to the fore-
front. Both screening strategies are now incorporated into
the 2014 World Health Organization (WHO) published
guidance on cervical cancer [3]. The cobas® hrHPV test, re-
cently approved by the US Food and Drug Administration
(FDA) for primary screening, is a qualitative PCR assay that
detects HPV types 16 and 18 and/or the other 12 high-risk
types [6]. However, this test is limited by the non-specific
detection of non-16/18 hrHPV types and non-detection of
possibly carcinogenic and not classifiable types as defined
by the International Agency for Research on Cancer (IARC)
[7, 8]. In contrast, full-spectrum HPV genotyping reveals
the genotype and phenotype (carcinogenic potential), which
are valuable guides for selecting conservative or ablative
therapy in the clinical setting.

Over the last two decades, our understanding of
cancer epigenetics has deepened immensely [9]. The
body of literature investigating aberrant DNA methy-
lation in cervical carcinoma and its contribution to
carcinogenesis via silencing of tumor suppressor genes
continue to grow [10-15]. The association between
HPV infection and aberrant promoter hypermethyla-
tion in host genes appears to be causal. However,
quantitative DNA methylation studies of abnormal
cervical cytology are sparse, and none has incorpo-
rated HPV genotype beyond high-risk types as a pre-
dictive marker [16, 17].
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To better understand the trilateral relationship between
HPV, genomic DNA methylation, and cervical cytopathol-
ogy, our goal was to use state-of-the-art molecular tech-
niques to screen and profile HPV genotypes and DNA
methylation in normal and precancerous Pap smears. The
correlation between the predictors (HPV genotype and ex-
tent of cellular DNA methylation) and three cytological
grades would then be quantitated and explored for its util-
ity as a molecular classifier of cervical cytology.

Methods

Subjects and samples

This study was conducted after gaining approval by the
Institutional Review Board of the Brooke Army Medical
Center (BAMC), Texas. Inclusion criteria were cervical
specimens derived from adult women >18 years of age
undergoing cervical cytology screening. Exclusion criteria
were cervical specimens from patients with conditions
that may alter genomic methylation, e.g., pregnancy and
non-HPV sexually transmitted infections.

Liquid-based cytology collected for clinical testing at
the Department of Pathology of BAMC was consecu-
tively procured after completion of analysis for cyto-
logical diagnosis. Samples were refrigerated at 4 °C until
weekly batch DNA extraction. Demographic data were
abstracted from the electronic health record (AHLTA) of
the Department of Defense (DoD) and code-linked to
each specimen. Three categories of the samples, ie.,
negative for intraepithelial lesion or malignancy (NILM),
low-grade squamous intraepithelial lesion (LSIL), and
high-grade squamous intraepithelial lesion (HSIL), were
collected until target accrual numbers were met: NILM
(N =100), LSIL (N = 100), and HSIL (N =77).

Cell lines and culture

Five cervical cancer cell lines (SiHa, HeLa Ca Ski, C33-A,
and DoTc2) were acquired from the American Type
Culture Collection (ATCC) to serve as (+) controls and
comparators of methylation. The cell type, tumor site der-
ivation, and HPV status were as follows: SiHa (squamous,
primary, HPV16+); HeLa (adenocarcinoma, primary,
HPV18+); Ca Ski (squamous, small intestine metastasis,
HPV16+/18+); C33-A (epithelial, primary, HPV-); and
DoTc2 (epithelial, primary, HPV-). Cells were cultured in
flasks for DNA extraction and p-Slides (Ibidi) for micros-
copy with appropriate media supplemented with 10 % FBS.
EMEM medium (ATCC) was used to grow HeLa, C-33A,
and SiHa cells. DMEM and RPMI-1640 media (ATCC)
were used to culture DoTc2 and Ca Ski cells, respectively.
Cells were grown at 37 °C in a CO, incubator until reach-
ing 80—90 % confluence. For methylation analysis, cellular
DNA was extracted for bisulfite conversion and pyrose-
quencing as described below for cytology samples. For
visualization of phenotypic differences, cellular organelles
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were stained as follows. The mitochondria were stained by
incubating cells overnight with fresh media containing
300 nM of MitoTracker® Orange CM-H2TMRos (Life
Technologies) followed by washing with fresh media for
15-30 min at 37 °C. Cells were fixed and permeabilized
with the FIX & PERM?" kit (Life Technologies). Actin and
nuclei were stained with respective reagents, ActinGreen™
488 and NucBlue® (Life Technologies), washed with PBS,
and mounted in ProLong” Gold antifade reagent (Life
Technologies). Images were acquired by a Leica TCS SP5
IT confocal microscope (Leica Microsystems).

The Cancer Genome Atlas cohort

The cervical cancer cohort of The Cancer Genome Atlas
(TCGA) was accessed on 3 October 2014 to acquire DNA
methylation data of squamous cell carcinomas (N =231)
and adenocarcinomas (N =26). The methylation data (5
value) generated with the Illumina HumanMethylation450
platform (HM450) in the level 3 format were used to deter-
mine promoter methylation levels of adenylate cyclase 8
(ADCYS), cadherin 8, type 2 (CDHS8), O-6-methylguanine-
DNA methyltransferase (MGMT), and zinc finger protein
582 (ZNF582). The matched RNA-SeqVersion 2 expression
data [18] were accessed via the cBioPortal [19] to determine
the correlation between methylation and expression of the
four genes of interest. The few available samples (N =3)
with matched (tumor/normal) DNA methylation (accessed
on 15 January 2015) were used to compare within and be-
tween subject differences.

Laboratory schema

Figure 1a illustrates the laboratory schema. After sample
collection, cellular DNA is extracted from cervical cytology
or cultured cancer cell lines. The DNA is subjected to HPV
DNA amplification, sequencing, and genotyping. For DNA
methylation analysis, the genomic DNA undergoes bisulfite
conversion and pyrosequencing. The results derived from
HPV genotyping and methylation quantification are ana-
lyzed for association or correlation with the cytological
grade. Figure 1b shows representative images of the three
categories of cervical cytology and five immunostained cer-
vical cancer cell lines used in this study. Morphological fea-
tures and differences are highlighted by the relative size and
distribution of organelles, i.e., mitochondria (orange), actin
filaments (green), and nuclei (blue).

HPV DNA amplification

Cervical cytology (10 mL) was centrifuged (4000 rpm x
2 min), and the supernatant was removed. The cell pellet
(200-250 pL) was transferred into sample tubes (2 mL)
and placed in a QIAcube robotic workstation (Qiagen)
for DNA extraction using the QIAamp DNA Mini kit
(Qiagen). The purified DNA in 150 pL of the eluent was
quantified by spectrophotometry and stored at —-20 °C
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prior to amplification. For HPV DNA amplification, three
consensus primer sets: (1) MY09/11, (2) FAP59/64, and
(3) GP-E6-3F/GP-E7-5B/GP-E7-6B, were used to amplify
two regions of HPV L1 and E6/E7 for genotype identifica-
tion [20-22]. AmpliTaq Gold 360 Master Mix (Life Tech-
nologies) and Qiagen Multiplex PCR Plus kit (Qiagen)
were used with the doublet and triplet primer sets, re-
spectively. Briefly, PCRs were performed in a final volume
(50 pL) containing template DNA (200 ng), PCR Master
Mix (25 pL), forward and reverse primers (1 pM each),
and RNAase-free water. The cycling protocols for the
three primer sets were as follows: (1) MY09/11: activation
(95 °C x 5 min), 40 cycles of three-step cycling (95 °C x
30 s, 57 °Cx90 s, 72 °C x 90 s), final extension (72 °C x
10 min); (2) FAP59/64: activation (95 °C x 5 min), 40 cycles
of three-step cycling (94 °Cx 60 s, 50 °Cx 90 s, 72 °C x
60 s), final extension (72 °C x 10 min); and (3) GP-E6/7:
activation (95 °C x 5 min), 45 cycles of three-step cycling
(94 °Cx 30 s, 55 °Cx 90 s, 72 °C x 90 s), final extension
(72 °C x 10 min). After amplification, high-resolution ca-
pillary gel electrophoresis was used to detect amplicons by
the QIAxcel (Qiagen) using the OM500 protocol. Samples
with amplicon bands were selected for DNA sequencing.

HPV DNA sequencing and genotyping

PCR products were purified using the GeneRead Size
Selection Kit (Qiagen) on the QIAcube robot. Sanger
sequencing of the amplicons (~200 ng DNA/sample)
was performed by using sequencing primers MY11,
FAP59, and GP-E6-3F (Eurofins Operon). Sequence
quality was assessed using the Sequence Scanner 2.0
(appliedbiosystems.com), where a “high-quality” trace
score (TS) (average base call quality value) was defined
as >20 and a QV20+ value (total number of bases in
the sequence with TS >20) as >100. Quality sequences
were filter selected for entry into the Basic Local
Alignment Search Tool (BLAST®) and queried against
HPV sequences in GenBank® under virus taxonomy
ID# 151340 [23]. The HPV genotype was based on the
most homologous and significant result. The propor-
tions of samples in which HPV was detected according
to (1) genotype and (2) carcinogenic potential within
each cytological category were compared.

Gene selection and methylation analysis

To confirm and discover new hypermethylated genes in
cervical carcinoma, 48 genes were selected for testing
(Additional file 1: Table S1). The selection of these genes
is addressed in the “Results” section. For the methylation
profiling of cervical cytology, the extracted genomic
DNA (220 ng/pL) was bisulfite-converted using the EZ
DNA methylation (Zymo) to convert unmethylated cyto-
sine residues to uracil. The converted DNA in the same
cytological category was amassed to generate three pools
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Fig. 1 Protocol schema and representative images of cervical cytology and cervical carcinoma cell lines used in the study. a Sample collection,
DNA extraction, HPV genotyping by Sanger sequencing, and CpG profiling of gene-specific promoters by pyrosequencing. b Three categories of
liquid-based cervical cytology: negative for intraepithelial lesion or malignancy (NILM), low-grade squamous intraepithelial lesion (LSIL), and high-
grade intraepithelial lesion (HSIL), reveal progressive nuclear enlargement, nuclear membrane irregularity, and chromatin coarseness associated
with worsening grade. Five cervical carcinoma cell lines: SiHa, Hela, Ca Ski, C33-A, and DoTc2, with distinct cytomorphologic features, e.g., cell size
and shape, nucleus (blue), nuclear-to-cytoplasmic ratio, chromatin patterns, actin cytoskeleton (green), and mitochondria (red). Each cell line was
immunofluorescence labeled and imaged by confocal microscopy (x63 objective). Abbreviations: CX cervical, CA cancer, PCR polymerase chain
reaction, HSIL high-grade squamous intraepithelial lesion, LSIL low-grade squamous intraepithelial lesion, NILM negative for intraepithelial lesion

or malignancy

by using equal amounts (2 pL) from individual samples.
Specifically, the first 36, 42, and 18 samples collected from

amplification of the pooled DNA (10-20 ng) in technical
replicates using Qiagen or PyroMark SW 2.0 designed

NILM, LSIL, and HSIL categories, respectively, were used
for pooled methylation screening [24]. The PCR cycling
protocol using the Applied Biosystem polymerase (N12338)
was as follows: activation (95 °Cx5 min); 50 cycles of
three-step cycling (95 °Cx 60 s, 60 °C x 60 s, 72 °C x 60 s);
and final extension (72 °Cx7 min). Loci-specific PCR

primers (Additional file 2: Table S2) was followed by pyro-
sequencing on a PyroMark Q96 MD system (Qiagen).
Methylation quantification of each CpG site was performed
using the PyroMark CpG 1.0 software. The built-in internal
quality control for bisulfite treatment and non-specific
background was set to 6.5 %.
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The screening criterion used to define hypermethy-
lation at each CpG site was 22.0x the methylation
level (%) of normal cytology samples. This method is
comparable to the selection criteria used by Farkas et
al. [25] for f5 values derived from the Illumina HM450
platform. A CpG locus was considered hypermethy-
lated if the AS value was >0.2, and the baseline (nor-
mal tissue) was <0.2. Six genes met our screening
criteria: ADCYS8, CDHS8, ZNF582, MGMT, ALK, and
NEFL. The best candidates (first four genes) were se-
lected for further testing of individual samples based
on documented association with cervical, oral, and/or
endometrial carcinoma [11, 26, 27]. The first 170 con-
secutively collected cytology samples from the follow-
ing categories: NILM (N=33), LSIL (N=70), and
HSIL (N =67), were subjected to individual locus-
specific methylation quantification. Furthermore, the
HPV status and methylation levels of these samples
were used to construct the multivariable logistic
model described below.

Definitions, variable coding, and logistic modeling

For this study, the classification of HPV carcinogenicity
was based on the WHO IARC Working Group Reports
[7, 8]. Specifically, HPV types 16, 18, 31, 33, 35, 39, 45, 51,
52, 56, 58, 59, and 68 were deemed carcinogenic (group
1); HPV types 26, 30, 34, 53, 66, 67, 69, 70, 73, 82, 85, and
97 were possibly carcinogenic (group 2B); and HPV types
6, 11, and others were not classifiable or not studied. To
compare the prevalence of HPV genotypes grouped by
carcinogenicity among the three cytological categories, the
HPV genotype found in each sample was coded in an or-
dinal scale: HPV undetected (0), not classifiable (1), pos-
sibly carcinogenic (2), and carcinogenic (3). Cytology was
also coded on an ordinal scale, NILM (0), LSIL (1), and
HSIL (2), to determine the correlation between HPV car-
cinogenicity and cytological grade.

Multivariable logistic regression [28] was performed to
investigate the association between the methylation level
of each CpG locus of a particular gene (ADCY8, CDHS,
and ZNF582) and a binarized cytological outcome of
interest. Outcome model 1 aimed to distinguish normal
from abnormal cytology (NILM vs. LSIL/HSIL), whereas
model 2 distinguished between non-high and high-grade
cytology (NILM/LSIL vs. HSIL). The model equation is
as follows:

Logistic model: Probability of outcome=P(Y=1)=1/
(1 +e"(-(b0 +b1X1 + --- + biXi)))

Multiple explanatory variables: X1, ..., Xi
and CpG-position i methylation level (%))

Model 1 outcome (Y) coding: NILM (0), LSIL/HSIL (1)

Model 2 outcome (Y) coding: NILM/LSIL (0), HSIL (1)

The covariates (CpG position selected from each gene)
that had the highest association with the response

(Xi = Gene X
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variable (lowest P value) were selected for cut-point (bi-
narization) determination. The cut-points were chosen
at the point of maximum accuracy (¥ sensitivity + speci-
ficity). The new binarized methylation variables of these
CpG sites, along with HPV carcinogenic status, were en-
tered in a second multivariable logistic regression ana-
lysis to select the explanatory variables most predictive
of the cytological outcome. The second model equation
is as follows:

Logistic model: Probability of outcome =P(Y=1)=1/
(1 +e"(=(b0 + b1X1 + --- + bdX4)))

Multiple explanatory variables: X1, ..., X4

X1 = HPV carcinogenicity (coded as ordinal data as de-
scribed in text)

X2 = ADCY8 CpG-position i methylation (0, 1)

X3 = CDH8 CpG-position i methylation (0, 1)

X4 = ZNF582 CpG-position i methylation (0, 1)

Model 1 outcome (Y) coding: NILM (0), LSIL/HSIL (1)

Model 2 outcome (Y) coding: NILM/LSIL (0), HSIL (1)

For the final regression models, post-estimation re-
ceiver operating characteristic (ROC) curves were
constructed and predictions at specified values were
computed. After estimating the classification thresh-
old or “cut-point” for each model by using the max-
imum sum of sensitivity and specificity, diagnostic
performance characteristics were determined. The
discriminatory performance between multivariable
and univariable (HPV carcinogenicity only) models
was compared using respective areas under the ROC
curve. Pairwise comparisons of predicted probabil-
ities between models were performed with the chi-
square test.

Statistical analysis

This study was designed to have an 80 % power to detect
a 20 % difference in DNA methylation (%) between nor-
mal and abnormal cytology. From the literature, locus-
specific promoter methylation levels (%) for NILM,
LSIL/HSIL, and cervical cancer have ranged from 0 to
5 %, 15 to 30 %, and 30 to 60 %, respectively [13, 15, 29].
To detect a 20 % difference in methylation levels using a
one-sided test set at & = 0.05 and S = 0.20 with an alloca-
tion ratio of 2 (N2/N1), a minimum accrual target of
N2 =62 and N1 =31 per group was required. The quota
sampling strategy assured adequate representation from
each cytological grade. Furthermore, additional samples
were collected to account for potential sample inad-
equacy and laboratory errors.

Data were summarized using means (95 % CI), me-
dians (IQR), and proportions. For hypothesis testing,
Wilcoxon rank sum and Kruskal-Wallis tests were used
for non-parametric, numerical, or ordinal data. Categor-
ical data were compared using the chi-square test. Cor-
relation between ordinal variables was determined by
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Spearman’s rho. P values <0.05 were considered statisti-
cally significant.

For TCGA methylation analysis, the pyrosequencing
CpG assay for each gene was translated into the Illumina
assay by selecting the nearest CpG loci on the HM450K
array. Methylation data (8 value, defined as the ratio of
methylated signal over the total signal (methylated +
unmethylated)) [25] were used to determine promoter
methylation levels of ADCYS, CDH8, MGMT, and
ZNF582. The median methylation values per locus were
stratified by the observation group, i.e., tumor stages and
histologic category (normal/tumor), and tested for differ-
ences by non-parametric methods. All subsequent ana-
lyses compared median methylation values across all
CpGs per gene as the single sample summary measure.
The correlation between methylation (S value) and
RNA-SeqV2 expression data (upper quartile of normal-
ized RSEM count estimates) [18] was determined by
Spearman’s rho. Statistical analyses were performed
using STATA/IC 13.0 (StataCorp LP).

Results

HPV carcinogenic genotypes are correlated with HSIL
Clinical and cytological characteristics are summarized
in Table 1. Residual cytology samples (N = 400) were col-
lected between January 2013 and 2014. Of all samples,
31 % (N=123) were excluded because of low quantity,
low quality, or sample excess, as described in Table 1.
For samples that met inclusion criteria (N =277), the
corresponding subjects were composed predominantly
of Caucasians (45 %) with a median age of 28 years
(IQR, 24-35). The cytological specimens were stratified
proportionately among the three grades: NILM 100/277
(36 %), LSIL 100/277 (36 %), and HSIL 77/277 (28 %).
The median concentration of the extracted DNA among
the three cytological categories (range, 46.3—51.8 ng/pL)
was statistically equivalent (Kruskal-Wallis test, p =
0.519) (Table 1).

To optimize HPV DNA detection, three primer sets tar-
geting three distinct regions of the HPV genome were
used. PCR amplification using primers MY09/11, FAP59/
64, and E6-E7 F/B yielded the expected 450-, 480-, and
660-bp fragments upon capillary gel electrophoresis
(Fig. 2a). An unexpected short amplicon (260 bp) derived
from amplification with the FAP primers was observed at
higher frequency in HSIL samples. DNA sequencing and
nucleotide BLAST mapped the 260-bp sequence nearest
to the HPV-58L1 segment (nucleotide range 6041 to
6253) belonging to the alpha-9 species but non-specific
for genotype identification. Partial loss of the HPV L1
gene was presumed because of virus-to-host genome inte-
gration frequently found in HSIL [30].

Gel electrophoresis positivity for HPV DNA after PCR
of each sample by the three primer sets is summarized by
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intersecting and complementary sets within Venn dia-
grams in Fig. 2b. The combined net positive rates of HPV
DNA detection for NILM 31/100 (31 %), LSIL 95/100
(95 %), and HSIL 71/77 (92 %) are represented by the
union of three sets within each Venn diagram (Fig. 2b). Of
the PCR-positive samples that were sequenced, 191 sam-
ples were genotyped by BLAST [23].

The prevalence of HPV genotypes found in three grades
of cytology is shown in Fig. 2c. The genotype spectrum
spanned the continuum of IARC-defined carcinogenic po-
tentials. As expected, there was a higher frequency of
HPV16 genotypes detected in low- and high-grade cy-
tology. Notably, the proportion of carcinogenic HPV types
positively correlated with cytological grade: NILM (23 %),
LSIL (49 %), and HSIL (91 %). Furthermore, LSIL and
HSIL samples had a significantly greater proportion of
carcinogenic than possibly carcinogenic and not classifi-
able HPV genotypes (chi-square, p <0.05), whereas the
distribution did not vary among NILM. Finally, a high fre-
quency of HPV-58 was noted in HSIL samples.

Promoter hypermethylation of ADCY8, CDH8, and ZNF582
are correlated with HSIL

The panel of genes (Additional file 1: Table S1)
selected for promoter methylation screening was com-
posed of genes previously reported to be hypermethy-
lated in cervical carcinoma and other malignancies,
e.g., brain, oral, breast, lung, hepatocellular, colorectal,
and endometrial. Many of these genes are known to
participate in the six biological capability hallmarks of
cancer, making them plausible factors in cervical car-
cinogenesis [31]. The quantitative methylation results
of four candidate genes selected for pyrosequencing
stratified by Pap grade and CpG position are presented
in Fig. 3a. The results indicate a positive correlation
between Pap grade and promoter methylation of
ADCYS8, CDHS, and ZNF582 (Spearman’s rank, p <
0.05) but not MGMT. Pairwise comparison of methy-
lation at each CpG locus between Pap grades revealed
higher levels in HSIL than LSIL and NILM with a few
exceptions (Fig. 3a). The differences between LSIL and
NILM were only significant for ZNF582 CpG loci 1
and 3 (*) (Fig. 3a). Interestingly, for MGMT, methyla-
tion values did not vary across Pap grades and CpG
positions.

Promoter hypermethylation of ADCY8, CDH8, and ZNF582
is validated in cervical cancer cell lines and TCGA cohort
Promoter methylation of four candidate genes was quanti-
fied in five cervical cancer cell lines. The median methyla-
tion across all CpG sites for each gene stratified by cell line
is presented in Fig. 3b. In general, hypermethylation of
ADCYS8, CDHS, and ZNF582 was noted in all cell lines
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Table 1 Clinical and cytological characteristics of the study
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Table 1 Clinical and cytological characteristics of the study

population population (Continued)
Characteristics Number Percentage? Range (ng/uL) 20.5-182.8
Clinical HSIL 77
Age? Median (ng/uL) (IQR) 51.8 (349-713)
Median (IQR) 28 (24-35) Range (ng/uL) 11.5-154.0
Range (year) 19-67 IQR interquartile range, LBC liquid-based cytology, LSIL low-grade squamous
R hnicit? intraepithelial lesion, HSIL high-grade squamous intraepithelial lesion, NILM
ace/ethnicity negative for intraepithelial lesion and malignancy
Asian [NILM, LSIL, HSIL] 915, 3,1] ?3) ?Age and race/ethnicity of subjects (N =277) are based on the demographic
data of included samples. The number of samples by race/ethnicity and
Black [NILM, LSIL, HSIL] 40 [14,15,11] (14) cytological diagnosis are placed in square brackets. The distribution of the five
. categories of race/ethnicity (inclusive of Other and Unknown) among the three
White [NILM, LSIL, HSIL] 124 [48, 40, 36] (45) cytological grades were not significantly different (x?, p =0.777)
Other [NILM, LSIL, HSIL] 65 [21, 28, 16] (24) PCytopathology results are ascribed to the specimens collected on the day of
the study enrollment
Unknown [NILM, LSIL, HSIL] 39[12,14,13] (14) “Exclusion criteria included: low cell pellet volume (<200 pL); low cellular DNA
Cviological® concentration (<20 ng/uL); low nucleic acid purity (spectrophotometry
Y 9 absorbance ratio 260/230 nm <0.7); excess samples (>100) (see text for details)
Total LBC samples collected 400 (100) “Data based on included samples (N =277)
. €Concentration of total cellular DNA per sample after manual or semi-
LBC samples excluded 123 €1) automated DNA extraction
NILM 33 fComparison of DNA concentrations between NILM, LSIL, and HSIL samples
were not significantly different (p =0.519) by Kruskal-Wallis test
LSIL 85 YValues are N (%) unless otherwise denoted
HSIL 5
LBC samples included 277 69) except C33A and DoTc2 (which failed the ADCYS assay).
NILM 100 For comparison between cell lines, the methylation levels of
LSIL 100 all four genes in SiHa (ranging from ~38 % in MGMT to
HSIL 77 93 % in ADCY8) were used as the referent. Although some
S ; significant differences in DNA methylation levels were de-
ource . .

' tected, e.g, decreased methylation of ADCY8 in HeLa/
Cervical 276 (996) C33A cells and CDH8 in C33A cells (Fig. 3b), the HPV-
Vaginal 1 04 positive cell lines consistently exhibited high methylation

Diagnostic category® levels (>50 %). For MGMT, methylation levels among the
Normal 100 (36) cell lines were inhomogeneous and polarized (Fig. 3b).
Abnormal 177 64) TCGA data for the cervical cancer cohort (N =231) re-

C der vealed distinct hypermethylation patterns among ADCYS,

Cellular DNA concentration®® .

ZNF582, and CDH8 (Fig. 4a) for reported and non-

NILM 100 reported clinical stages (median S value range, 0.427-
Median (ng/uL) (IQR) 48.1 (37.1-743) 0.632). For MGMT, the methylation was consistently low
Range (ng/uL) 208-1815 with a median S value of 0.012 across all stages. Moreover,
LSIL 100 methylation levels were not distinguishable between stages
Median (ng/uL) (QR 463 (356-63.1) for the four genes (Kruskal-Wallis, p > 0.05). Association

analysis between methylation and matched RNA-Seq
expression data revealed modest anti-correlation for
ZNF582 (Spearman’s p =-0.2349, p <0.05) and MGMT
(Spearman’s p = -0.1660, p < 0.05) but not for ADCY8 and
CDHS (Additional file 3: Figure S1).

TCGA data for the three available tumor/normal
matched pairs of cervical tissues were examined for
within and between subject promoter methylation differ-
ences. Because of the small sample size, formal statistical
analysis was not performed. However, increased median
methylation (~10x) of ADCY8, CDHS8, and ZNF582, but
not MGMT, was noted in the tumor cohort (N =257)
compared with the three normal samples (Fig. 4b). Not-
ably, the methylation levels for adenocarcinomas (N =
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Fig. 2 PCR amplification of HPV DNA by three consensus primer sets and HPV genotyping by amplicon sequencing. a Representative gel image
of PCR amplicon detection by high-resolution capillary gel electrophoresis. Representative samples #285 (LSIL) and #179 (HSIL) reveal MY09/11,
FAP59/64, and GP-E6/E7 F/B amplicons with expected yield of ~450-, 480- (or 260-bp fragment), and 660-bp fragments, respectively. b Parallel
PCR testing for HPV by three primer sets. Venn diagrams show intersecting and complementary sets of cytological samples (N) detected of HPV
DNA by MY-, FAP-, and E6/E7 primer sets according to cytological diagnoses, i.e., NILM, LSIL, and HSIL. The net positivity of simultaneous testing
for HPV (union of the circles) in NILM, LSIL, and HSIL are 31/100 (31 %), 95/100 (95 %), and 71/77 (92 %), respectively. ¢ HPV genotype distribution
of 191 cytology samples with PCR-detected HPV DNA according to cytological diagnoses: NILM, LSIL, and HSIL. The increase in carcinogenic HPV
genotypes was coincident with cytological grade (Spearman’s p=0.658, p < 0.001). Samples positive for the 260-bp fragment that aligned closest
to HPV-58 were assigned as “alpha-9” species because of the non-specific short sequence length. *p < 0.05 by the chi-square test. Abbreviations:
AM alignment marker, B buffer, bp base pair, HSIL high-grade squamous intraepithelial lesion, IARC International Agency for Research on Cancer,
LSIL low-grade squamous intraepithelial lesion, M molecular weight ladder, NILM negative for intraepithelial lesion or malignancy

26) were comparable to those of squamous carcinomas;
hence, these samples were included in the tumor cohort.

HPV genotype and promoter hypermethylation of ADCYS,
CDH8, and ZNF582 as a predictor of HSIL

The logistic regression analysis and ROC curves for the
univariable and multivariable logit models for cytological
outcomes are presented in Additional file 4: Table S3,
Additional file 5: Table S4, and Fig. 5a, respectively. The
HPV carcinogenic potential (carcinogenic, possibly car-
cinogenic, not classifiable, and negative) among the three
cytological categories was distributed, respectively: HSIL
(91, 3, 3, 3 %); LSIL (54, 21, 17, 7 %), and NILM (18, 3,
12, 67 %). For model 1, the best predictors were HPV
carcinogenicity and ZNF582_CpG-position 3, with an
area under the ROC of 0.93. For model 2, the best
predictors were HPV carcinogenicity and ADCY8_CpG-
position 7, CDH8_CpG-position 3, and ZNF582_ CpG-
position 3, with an area under the ROC of 0.89. The
discriminatory performance of both multivariable
models inclusive of methylation markers was better than
that of the univariate predictor (HPV carcinogenicity)
model by comparing areas under the ROC (chi-square,
p <0.05).

The predicted probabilities at representative values
over the range of predictor variables are presented as
margins plots (Fig. 5b—d). Figure 5b, c illustrates the seg-
regating effect of ZNF582 over HPV carcinogenicity
alone as a predictor of abnormal Pap smear (LSIL/
HSIL). More importantly, HPV negativity in conjunction
with low ZNF582 methylation was highly indicative of a
normal Pap with a negative predictive value (NPV) of
100 % (Fig. 5¢). The predicted probabilities or margins
for all possible combinations (N =8) of predictor vari-
ables in model 1 are provided in Additional file 6: Table
S5. For model 2, the cumulative effects of ADCYS,
CDHS8, and ZNF582 promoter methylation over HPV
carcinogenicity alone as a predictor of HSIL were signifi-
cant (Fig. 5b, d). The probability of HSIL increased
incrementally as the number of methylated genes in-
creased from 0 to 3 (Fig. 5d, four-panel chart). The
predicted probabilities for all possible combinations

(N =32) of predictor variables in model 2 are tabu-
lated in Additional file 7: Table S6.

The diagnostic performance characteristics of models
1 and 2 are presented in Additional file 8: Table S7 and
Additional file 9: Table S8. For clinical performance, the
sensitivity of HPV + ZNF582 was higher (100 %) than
that of HPV (90 %) in detecting abnormal (LSIL/HSIL)
cytology. The positive predictive values (PPVs) were
comparable at 93-95 %, suggesting that for patients with
a positive assay, almost all have abnormal cytology. In
contrast, for patients with a negative assay, the chance
of finding no disease (NPV) was 100 % for HPV +
ZNF582 vs. 66 % for HPV, suggesting that HPV +
ZNF582 is a better screening test. For model 2, the PPV
was greater for the HPV + three-methylation marker
(81 %) vs. HPV (58 %), suggesting that in patients with a
positive multi-marker test, almost 80 % will have HSIL.
Furthermore, the false-positive rate is lower for the
HPV + three-methylation marker (19 %) than for HPV
(42 %). Essentially, the results of the two models indicate
that (1) HPV + ZNF582 is a better predictor of NILM
and (2) HPV + three-methylation marker is a better pre-
dictor of HSIL than HPV alone.

Discussion

This study aimed to determine the association between
HPV genotypes and cellular epigenetic modifications in
three grades of cervical cytology. Indeed, our study
found positive correlations between HPV carcinogen-
icity; aberrant DNA methylation in the promoters of
ADCYS8, CDHS, and ZNF582; and cytological grade. Our
previous experience had shown that parallel PCR testing
with multiple primer sets optimizes the sensitivity and
breadth of HPV detection; thus, this methodology was
used herein [23]. The HPV positivity rate detected in
normal cytology was 31 %, which increased precipitously
to >90 % in LSIL and HSIL samples. Compared with a
meta-analysis of worldwide HPV prevalence in normal
cytology, our statistic was ~10 % higher [32]. Our ex-
tended breadth of detection may be accounted for by the
triple-primer PCR approach versus the single-primer
PCR and hybrid capture 2 used in the majority of the
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Fig. 3 Promoter methylation differences in cervical cytology and cervical carcinoma cell lines. a Methylation (%) of total genomic DNA in three
grades of cervical cytology, i.e, NILM (N = 33), LSIL (N=70), and HSIL (N =67), was compared by CpG positions among four genes (ADCY8, CDHS,
ZNF582, and MGMT). Pairwise comparisons of methylation for each CpG position between cytological grades (NILM vs. LSIL, LSIL vs. HSIL, and
NILM vs. HSIL) revealed significantly higher levels for HSIL vs. LSIL and LSIL vs. NILM at multiple positions for ADCY8, CDH8, and ZNF582. For
MGMT, methylation levels were not significantly different among cytological grades. Methylation levels for each CpG position increased
concurrently with cytological grade for ADCY8, CDH8, and ZNF582 by Spearman’s p (p < 0.001). *p < 0.05 by the Wilcoxon rank-sum test. b SiHa,
Hela, and Ca Ski cell lines with genome-integrated HPV demonstrated promoter hypermethylation of ADCYS, CDHS8, and ZNF582 genes. For HPV-
negative cell lines, DoTc2 and C33-A revealed an inconsistent pattern of hypermethylation in the studied genes. Using SiHa methylation (%) as a
reference (o), cell lines with significantly different levels are indicated by an asterisk. *p < 0.05 by the Wilcoxon rank-sum test. NS not statistically
significant. Cell lines were analyzed for CpG methylation in duplicate collections
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Fig. 4 Promoter methylation of ADCY8, CDH8, ZNF582, and MGMT in the TCGA cervical cancer cohort. a Box plots of CpG methylation (8 value)
according to FIGO stage for 231 patient samples with squamous cell carcinoma. Gene-specific median methylation values for all FIGO stages are
specified (Md) and indicated by the blue reference lines. NS not statistically significant, Kruskal-Wallis P > 0.05. NR stage not reported. b Differential CpG
methylation (3 value) ante- and post-transcription start site for 257 cervical carcinomas (squamous, N = 231; adenocarcinoma, N = 26) and 3 tumor/
matched normal samples. The four panels display the chromosomal positions of ADCY8, CDHS, ZNF582, and MGMT (red line) with an expanded area
showing the CpG probes on the lllumina HumanMethylation 450 K microarray (gene ball-and-stick diagrams). The bar graphs present the median DNA
methylation (3 value) of 257 tumors (black) and 3 matched tumor (orange)/normal (yellow) samples across the ordered CpG probes. The promoter
methylation levels were notably higher (~x10) for tumor (median 3 ~0.6) than the normal samples (median 5 ~0.06) for ADCY8, CDHS8, and ZNF582.

The enhancer/promoter and gene body regions are indicated by the green and blue arrows, respectively. The CpG regions selected for bisulfite
pyrosequencing of cytology samples are denoted by the underscored CpG probes. The chromosome coordinates for the CpG probes along the
X-axis are as follows: ADCY8 (chr8: 132,053,823-131,896,788), CDH8 (chr16: 62,070,072-61,871,849), ZNF582 (chr19: 56,905,383-56,901,457), and MGMT
(chr10: 131,264,840-131,304,833). [Chromosome ideograms adapted from NCBI Map Viewer (www.ncbi.nlm.nih.gov/genome/guide/human)]

studies cited [32]. PCR/sequencing was used to deter-
mine the dominant HPV genotype within each sample.
However, a drawback of direct sequencing is the indeci-
pherability of non-dominant sequences in mixed infec-
tions. Although the rate of mixed HPV infections is
unknown for our samples, it is noteworthy to recognize
the high prevalence of multiple HPV types in NILM,
LSIL, and HSIL cytology which may reach 37, 76, and
66 %, respectively, in HPV-positive samples [33, 34]. Fur-
thermore, HPV-58 accounted for a significant propor-
tion (13 %) of carcinogenic HPV in the HSIL category.
The high prevalence of HPV-58 may be explained by
our population. According to the 2010 Bureau of the
Census, 63 % of the population of San Antonio, Texas, is
of Hispanic/Latino origin. Ethnogeographical predilec-
tion of HPV-58 has been observed in certain Latin
American countries, including Southeastern Mexico,
Brazil, and Costa Rica [35]. The race/ethnicity of our
population derived from electronic medical records indi-
cated that 38 % were categorized as “Other” or “Un-
known.” Based on our clinic population, we surmise that
“Other” was a person of Hispanic/Latino origin.

The proportion of carcinogenic HPV genotypes found
in the samples after genotyping was highest among the
HSIL group. Cellular genomic analyses revealed a signifi-
cant increase in the promoter methylation of ADCYS,
CDHS8, and ZNF582 concomitant with worsening cyto-
logical grade. Conjointly, HPV carcinogenicity and the
binarized methylation levels of the three genes were sig-
nificant predictors of cytological outcome in a multivari-
able model. Specifically, HPV and ZNF582 demonstrated
high discriminatory performance as a screening test to
differentiate normal (NILM) from abnormal cytology
(LSIL/HSIL) with a NPV of 100 %. In contrast, the lower
NPV (66 %) for HPV alone in detecting abnormal cy-
tology may be explained by the elevated false-negative
rates of HPV DNA detection in LSIL/HSIL. PCR non-
detection may be attributed to several variables, e.g., in-
sufficient DNA template quality or quantity, primer-
target mismatch, and loss of HPV viral sequences except

for E6 and E7 upon integration into the cellular genome,
notably in HSIL and invasive disease [23, 30]. In fact, a
recent study by Blatt and colleagues revealed a signifi-
cant HPV non-detection rate in women with abnormal
cytology (14.5 %) and invasive cancer (18.6 %) [36]. For
abnormal cytology, HPV and ADCYS8, CDHS, and
ZNF582 differentiated the <HSIL from HSIL samples
with a PPV of 81 %. In terms of clinical utility, the
addition of quantitative methylation markers to the
probabilistic model significantly improved the diagnostic
accuracy of HPV carcinogenicity as a single predictor of
cytological outcome.

Promoter hypermethylation of ADCYS, CDHS, and
ZNF582 was corroborated in five cervical cancer cell lines
with two exceptions. C33A cells exhibited low CDH8
methylation levels and DoTc2 failed the ADCYS assay, pre-
sumably because of low levels as well. Both C33A and
DoTc2 cells are HPV-negative, which may explain the hy-
pomethylation as previously demonstrated in HPV+/HPV-
head and neck squamous cell carcinoma (HNSCC) cell
lines and tumors [26]. TCGA dataset confirmed gene-
specific hypermethylation in cervical tumors. Promoter
methylation of ADCYS8, CDHS, and ZNF582 was markedly
elevated across all four stages of cervical carcinoma. The
lack of variability between stages suggested that these epi-
mutations occurred early in the neoplastic process.
Whether these alterations are tumor “drivers” or “passen-
gers” is unknown. Nonetheless, they serve as informative
host biomarkers for epithelial dysplasia/neoplasia. More-
over, within-subject analysis of matched tumor and normal
tissues verified differential promoter methylation for
ADCYS8, CDHS, and ZNF582. It is worth mentioning that
when the current study was initiated, there were only 119
cases (year 2011 (N=66), year 2012 (N=53)) with 1
matched (tumor/normal) sample in TCGA. Furthermore,
the targeted CpG loci between pyrosequencing and HM450
methylation assays may not be identical and may thus ren-
der different results. Different CpG positions, even in close
proximity, within the same CpG-island may exhibit dissimi-
lar methylation levels [37].
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Fig. 5 Regression models and predicted probability plots for cytological grades. a Receiver operating characteristic curve analysis using cut-points derived
from univariate ROC analysis of gene-specific methylation levels. Multivariable modeling revealed the best predictor to differentiate between NILM and
LSIL/HSIL was HPV carcinogenicity and ZNF582_7th CpG position binarized as follows: <1.1 (0), 1.1 (1) (ROC AUC = 0.93). For differentiating between
NILM/LSIL and HSIL cytology, the best multivariate predictor was the combination of HPV carcinogenicity, ADCY8_7th CpG-position, CDH8_3rd CpG-
position, and ZNF582_3rd CpG-position (ROC AUC = 0.89); the binarized methylation values (%) used for the respective three genes were as follows: <5.8
(0), 25.8; <30 (0), 230 (1); and <1.1(0), 21.1(1). b Predicted probability plot of binarized cytology grades (NILM vs. LSIL/HSIL and NILM/LSIL vs. HSIL) using
HPV carcinogenicity as the single predictor variable. ¢ Comparison of predicted probabilities for abnormal cytology (NILM vs. LSIL/HSIL) by HPV carcinogen-
icity and binarized ZNF582 methylation level coded as <1.1 (0) or 21.1 (1). d Comparison of predicted probabilities for HSIL (NILM/LSIL vs. HSIL) permuted
by binarized methylation values of ADCYS, CDHS, and ZNF582 at the CpG positions noted above. The four panels illustrate the escalating probability for HSIL
coincident with the increasing number of methylated genes. a-d The number of cytology samples grouped by HPV carcinogenic potential among a total
of 170 samples were as follows: negative (N = 29), not classifiable (N = 18), possibly carcinogenic (N = 18), and carcinogenic (N = 105). *p < 0.05 by the chi-
square test and delta method for pairwise comparison of margins. ROC Receiver operating characteristic, AUC area under the curve

The gene products of ZNF582, CDHS, and ADCY8 have
unique cellular functions that may be repressed via epi-
genetic modifications and participate in the neoplastic
process. First, ZNF582 located on chromosome 19 en-
codes a nuclear protein belonging to the Cys2His2-
(C2H2) zinc finger protein family with a conserved
Kruppel-associated box (KRAB) domain [38]. The exact
function of the ZNF582 protein is unknown; however,
KRAB-ZFPs, in general, are transcriptional repressors that
bind to the gene promoter regions via their sequence-
specific DNA binding motifs. Some KRAB-ZFPs are
known to regulate apoptosis and act as tumor suppressors;
thus, inactivation may be involved in tumorigenesis [39].
Previous studies have shown that ZNF582 is frequently
methylated in invasive squamous and adenocarcinoma of
the cervix, as well as preinvasive disease [11, 16, 40]. The
CDHS8 gene on chromosome 16 encodes cadherin, which
is a cell membrane-spanning protein that mediates cell-
cell adhesion and recognition [41]. A recent study of
HNSCC showed that ten genes of the cadherin superfam-
ily including CDH8 were hypermethylated in HPV+
HNSCC [26]. Additionally, the HPV E6 gene was identi-
fied as the effector gene causing the hypermethylation sig-
nature. Silencing of the cadherin superfamily genes has
been implicated in many cancers, with attendant hall-
marks such as epithelial-mesenchymal transition (EMT)
involved in invasion and metastasis [26, 42]. The third
gene, ADCY8 on chromosome 8, encodes a membrane-
bound enzyme that catalyzes the formation of cyclic AMP
from ATP [43]. This gene is expressed primarily in the
brain, and its exact function is unclear. Recent studies
have demonstrated its role in brain glioma formation and
association with endometrial cancer. Warrington et al.
[44] elegantly demonstrated how suppression of cAMP in-
duces gliomatosis and restitution-inhibited glioma growth
in a neurofibromatosis-1 mouse model. ADCY8 hyperme-
thylation and altered expression have also been observed
in endometrial cancer [27, 45]. In summary, our findings
of hypermethylation in these particular genes are consist-
ent with the existing literature pertaining to methylation,
biological function, and plausible roles in carcinogenesis.

The strength of this study lies in the methodologies
used for HPV detection and methylation quantifica-
tion. HPV detection by parallel PCR/sequencing offers
the greatest sensitivity and breadth of HPV detection.
This method unleashes the constrained spectrum of
HPV genotypes detected by commercial tests to obvi-
ate measurement bias. Furthermore, allocating the
HPV genotypes by IARC-defined carcinogenicity enu-
merates oncogenic potential to allow for predictive
modeling. In contradistinction, commercially available
HPYV tests only detect carcinogenic and not possibly or
not classifiable HPV genotypes. Such dichotomized
classification, i.e., high-risk positive or negative HPV,
has a significant false-negative rate because of the
non-detection of “low-risk” HPV, which may pose a
clinical risk. Regarding quantitative DNA methylation,
CpG analysis by pyrosequencing was chosen for its ac-
curacy and high quantitative resolution. This method
may also be easily translated into a clinically applic-
able test, i.e., real-time PCR with high-resolution melt
analysis [46]. Essentially, the combination of bio-
markers has emerged as a refinement of our current
one-dimensional clinical diagnostics, i.e., Pap or
hrHPYV, that serve as markers for detecting and quan-
tifying oncogenic potential. Because this study was
conducted as a biomarker discovery project, the ~300
samples used were considered the “training set” for
predictive modeling. To overcome this limitation,
cross-validation using another larger cohort is under-
way to predict the fit of our model. Another note-
worthy limitation is the use of cytology instead of
histology as the outcome of interest for our predictive
models. Cytopathology was used as the surrogate
marker for the disease due to the total or frequent ab-
sence of tissue biopsies for women with NILM and
LSIL cytology, respectively. For the cytology samples
used for model building, histopathology was available for
29/70 (41 %) LSIL and 52/67 (78 %) HSIL samples with
substantial cytohistological agreement rates of 66 and
73 % to CIN I and CIN II-III, respectively. Therefore,
cytological diagnosis was deemed a practical and valid
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outcome measure for model construction. Finally, atypical
squamous and glandular cells of undetermined signifi-
cance (ASC-US and AGUS) cytological categories were
not studied. The overall frequency of HPV+/ASC-US
(1.1 %) and HPV+/AGUS (0.05 %) is low; however, the 5-
year risk of histologic HSIL and cancer is significant, i.e.,
18 and 45 %, respectively [47]. To fill this knowledge gap,
we plan to investigate uncommon cytological categories to
further our understanding of viral ecology and associated
epigenetic alterations.

Conclusions

In conclusion, the results of this study showed that dif-
ferent grades of cervical cytology possess different mo-
lecular signatures, which may be translated into a multi-
targeted “molecular Pap” for clinical use. With the rapid
evolution of molecular technologies, it is foreseeable that
cervical cancer screening may become a fully automated,
computerized, molecular diagnostic test that may cir-
cumvent economic hardships and the non-existence of
infrastructures for cytology-based screening programs in
developing countries.
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