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Abstract

Background: Gender, genetic makeup, and prior experience interact to determine physiological responses to

an external perceived stressor. Here, we investigated the contribution of both genetic variants and promoter
methylation of the NR3CT (glucocorticoid receptor) gene to the cardiovascular and hypothalamus-pituitary-adrenal
(HPA) axis response to the socially evaluated cold pressor test (seCPT).

Results: Two hundred thirty-two healthy participants were recruited and underwent the experiment. They were
randomly assigned to either the seCPT group (cold water) or a control group (warm water). The seCPT group had a
clear stress reaction; salivary cortisol levels and peak systolic and diastolic blood pressure all increased significantly
compared to the control group. GR genotype (Tthilll, NR3C1-l, TH, E22E, R23K, Bcll and 9beta) and methylation

data were obtained from 218 participants. Haplotypes were built from the GR genotypes, and haplotype 2
(minor allele of Bcll) carriers had a higher cortisol response to the seCPT in comparison to non-carriers (20.77 + 13.22;
14.99 + 842; p=0.034), as well as independently of the experimental manipulation, higher baseline heart

rate (7244 +10.99; 68.74 +9.79; p=0.022) and blood pressure (11581 + 1047; 111.61 + 10.74; p = 0.048). Average
methylation levels throughout promoter 1F and 1H were low (2.76 and 1.69 %, respectively), but there was a strong
correlation between individual CpGs and the distance separating them (Pearson’s correlation r=0.725, p=3.03 x 10~°).
Higher promoter-wide methylation levels were associated with decreased baseline blood pressure, and when
incorporated into a linear mixed effect model significantly predicted lower systolic and diastolic blood pressure
evolution over time in response to the experimental manipulation. The underlying genotype significantly predicted
methylation levels; particularly, the homozygous Bcll minor allele was associated with higher methylation in promoter
H (p=0042).
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by an exquisite mix of genetic and epigenetic factors.

Conclusions: This is one of the first studies linking epigenetic modifications of the GR promoter, receptor genotype
and physiological measures of the stress response. At baseline, there were clear genetic and epigenetic effects on
blood pressure. The seCPT induced a strong cardiovascular and HPA axis response, and both systems were affected by
the functional genetic variants, although methylation also predicted blood pressure reactivity. The return to baseline
was predominantly influenced by the genomic sequence. Overall, the physiological response to the seCPT is controlled

Keywords: Glucocorticoid receptor, Alternative promoter, Single nucleotide polymorphism, Methylation

Background

External challenges trigger hypothalamus-pituitary-adrenal
(HPA) axis activation and cortisol secretion, maintaining
homeostasis and permitting adaptation [1]. Glucocorticoid
receptor (GR, gene: NR3CI, OMIM +138040) protein
isoforms and levels throughout all HPA axis tissues control
glucocorticoid (GC) feedback, setting individual levels of
stress reactivity and responsivity. A complex interplay of
genetic and epigenetic mechanisms control GR levels,
protein isoforms, and potentially the end phenotype. Twin
research has suggested that part of the inter-individual dif-
ferences in the stress response may be explained by genetic
factors [2], and both rodent models and human studies
show an environmental influence via epigenetic mecha-
nisms [3-5]. Both epigenetic and genetic factors influence
the transcriptional control of the GR through the series of
tissue-specific promoters found upstream of the 11 alterna-
tive GR first exons [6—8].

It is well established that individual genetic variants of
the glucocorticoid receptor affect both the basic cellular
phenotypes i.e. GR expression levels [9] and the overall
HPA axis stress response (reviewed in [10]) through ei-
ther an altered GC response or sensitivity. Numerous
GR SNPs are in a high linkage disequilibrium resulting
in commonly accepted haplotypes [10] (Additional file 1:
Table S1). Three haplotypes, Bcll alone, TthiIll + Bcll
and N363S alone are all associated with an increased
sensitivity to GCs [11, 12]. The N363S polymorphism
was associated with increased BMI, raised cholesterol
levels and an increased risk for coronary artery disease
[12]. Inversely, two haplotypes TthIIIl + 9 and TthIIll +
98 + ER22/23EK have been associated with GC re-
sistance [13]. Importantly, there are a total of 12 known
genetic variants throughout the 8 confirmed promoter
regions controlling the expression of the 11 alternative
first exons in the variable 5" untranslated region (UTR)
of the GR [9, 14]. This 5'UTR is responsible for control-
ling tissue-specific alternative first exon expression,
overall GR levels and isoforms [6, 7, 15, 16].

Epigenetic modifications such as DNA methylation,
post translational chromatin remodelling and small
RNA-based mechanisms have more recently been shown
to contribute both independently or together with

genetic variation to gene regulation. DNA methylation is
unique, as it is the only epigenetic mechanism that may
regulate gene expression, is clearly propagated through
mitosis, whilst retaining its function [17]. Although the
associations of GR promoter methylation with diseases
such as posttraumatic stress disorder [18] and depression
[5, 19-21] are well studied, there is very little evidence on
how it influences HPA axis (re)activity or any other aspect
of the stress response such as cardiovascular reactivity.
The available studies provide inconclusive data. High
methylation levels were associated with an increased saliv-
ary cortisol response in infants [19] and with a female-
specific increased cortisol secretion after stress [22].
Conversely, increased methylation levels were also asso-
ciated with a decreased response to pharmacological
HPA axis stimulation [23] or could be explained by dif-
ferences in both education and lifestyle [24]. The effect
of DNA methylation on stress-related cardiovascular
reactivity remains unexplored. These studies were lim-
ited to the proximal GR promoter regions thought to
control tissue and stimuli specific GR levels [6, 16]. The
mechanisms underlying the effects of DNA methylation
on gene expression are not, however, particularly well
understood [25]. The longstanding association of DNA
methylation with gene silencing (reviewed in [26]) does
not reflect its functional complexity, orchestrating tis-
sue-specific regulatory elements and expression patterns
[27], marking alternative intra-genic promoters [28], con-
trolling alternative splicing [25, 29, 30] and even promot-
ing gene transcription [27, 31, 32]. The evidence currently
available suggests that methylation in these regions of the
GR do not only control the relative promoter activity, and
levels of individual first exon transcripts, but also the
final protein isoform and its cellular localisation [7, 16].

Genetic and epigenetic factors work together to produce
the overall response, reflected in the cortisol secretion and
cardiovascular system activation to an external stressor;
however, neither factor acts unilaterally. Whilst epigenetic
factors, particularly DNA methylation, integrate the en-
vironment experienced with the genotype [33], the
underlying DNA sequence also has a large influence on
methylation levels. In both genome-wide family-based
genetic studies and HapMap cell lines, genetic variants
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affected DNA methylation without necessarily introdu-
cing new CpG methylation sites [34, 35]. However, the
only GR data available to our knowledge suggests that
there is no association between the Bcll variant and
methylation of the GR promoter 1F in the human pla-
centa, although none of the other promoters or exons
were investigated. However, there was a potential asso-
ciation between methylation, genotype and infant neu-
robehavioural outcomes [36].

In this study, we investigated the relative contribution
of genetic variants and promoter methylation of the GR
to both cardiovascular and HPA axis stress reactivity. In
a cohort of healthy adults, stress was induced using the
socially evaluated cold pressor test (seCPT), and cardio-
vascular reactivity was assessed from heart rate (HR)
and systolic and diastolic blood pressure (SBP/DBP)
changes. HPA axis reactivity was assessed from salivary
cortisol. We identified associations between promoter
methylation and genetic variants and analysed how these
impact cardiovascular as well as HPA axis activity in
response to the seCPT.

Results

Study population and randomisation

A homogenous cohort of 232 undergraduate students
with minimal lifestyle differences were recruited, and
data from 218 (103 males and 115 females) were ana-
lysed (Fig. 1). Two participants had BDI-II scores of 25
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and 26, indicative of moderate depression and were ex-
cluded from all subsequent analyses. The mean BDI-II
score of 5.976 was within the minimal range (0-13). Al-
though the mean BDI-II score for female participants was
slightly higher (p=0.011) compared to males, no differ-
ence has been found between the seCPT and control
group (p=0.438). When included in the study, partici-
pants were given a date for the experimental session.
Upon arrival on that date, they were assigned to either the
seCPT or control group in a 2:1 alternating order. At
baseline, there were no group differences in any of the
variables tested (Table 1).

seCPT induced a physiological and subjective
psychological stress response

As previously reported [37], salivary cortisol levels were
significantly increased in the seCPT group compared to
the control group (paucg=0.001; pauci <0.001, ¢ test).
Peak SBP and DBP levels were significantly increased
from baseline in the seCPT group compared to the con-
trol group. However, both SBP and DBP were compar-
able between the seCPT and control groups in both the
baseline and recovery periods (p=0.299 and p=0.712,
ANOVA between the seCPT and the control group).
Bivariate analysis by sex showed a significantly greater
increase in SBP levels in men (p=7.02x107°) and a
trend towards a greater increase from baseline to peak
levels (p = 0.093). There was no effect of sex on diastolic

|Parlicipants enrolled (n=232 |

Excluded in total (n=14)
# not meeting inclusion criteria (n=12)

Excluded cases

# high BDI-II scores (n=2)

| Participants randomized (n=218) |

Allocation

Allocation to SeCPT group
(n=142)
ice-cold water 2-3°C

-Experiment-

Analysed (n=142)

GR genotype (n=140-142)"
GR methylation level (N=140)
BP/HR (N=138)

Allocation to control group
(n=76)
warm water 35-37°C

Before Experiment: Subjective rating questionnaires

After Experiment: Subjective rating questionnaires

Analysed (n=76)

GR genotype (n=75-76)"
GR methylation level (N=75)
BP/HR (N=72)

Fig. 1 Recruitment summary for all donors contacted, participating, exiting and analysed after completion of the study
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Table 1 Summary of participant characteristics and group gender repartition

seCPT group Control group Full population p value®
Sex (male) 70 35 105 0.736
Age 2289+27 2327+30 230128 0.356
BMI 221+23 225+24 222+23 0.243
BDI 6.1+£53 55+45 6.0£5.1 0438
Arousal (0-100) 20.1+£193 232+201 238+ 195 0.769
Stress (0-100) 252+218 224+213 243+216 0.379
Anxiety (0-100) 121£156 76+95 106 £ 14.1 0.010
Tension (0-100) 178+48 176+52 17.7+£49 0.803
Activity (0-100) 263+6.5 276%6.1 26.7 +64 0.153

Males Females Analysed population

103 (47.2 %)
70 (66.66 %)
35 (3333 %)

Complete cohort
seCPT

Control

115 (52.8 %)
77 (68.14 %)
36 (31.86 %)

218 (100 %)
147 (66.97 %)
72 (33.03 %)

2Comparison of seCPT vs control Gp

blood pressure or heart rate increase, decrease or peak
levels (p > 0.1). Participants rated the seCPT significantly
more stressful and had significantly higher levels of
arousal, anxiety, activity and tension (all p<0.01
paired ¢ tests) compared to the control group. Subjective
ratings were not dependent on gender (p > 0.05), although
female participants tended towards increased anxiety in
the seCPT group compared to control (p = 0.057).

Genotype and haplotype analysis in the cohort

GR genotyping was completed for TthIIll, NR3C1-I, 1H,
E22E, R23K, Bcll and 9beta in 217, 215, 218, 218, 216,
218 and 218 participants, respectively. Due to their low
frequencies, both hetero- and homozygous carriers were
combined into one group for R23K (GA =18, AA=3)
and promoter 1H (GA =55, AA =3). Minor allele fre-
quencies (Table 2), and LD scores (D’) (Fig. 2) were in
line with previously reported data [38]. The haplotype
structure was successfully created with PHASE for all
the available data points, and those with frequencies
above 5 % are illustrated in Fig. 2. Haplotype 1 (C-T-G-
G-G-C-A) had a frequency of 61.9 % and consisted of

the major alleles of each SNP. Haplotype 2 (C-T-G-G-G-
G-A) with 36.8 % contained the minor alleles of Bcll.
Haplotype 3 (T-C-G-G-G-C-G) included the minor allele
of Tthllll, NR3C1-I and 9beta and showed a frequency of
26.4 %. Haplotype 4 (T-T-A-G-G-G-A) with 19.5 % con-
tained the minor allele of T¢hIl1, 1H and Bc/1. Haplotype
5 (T-C-G-A-A-C-G) with 6.5 % contained the minor allele
of Tthilll, NR3C1-I, ER22E, R23K and 9beta. Haplotype 6
(T-T-G-G-G-G-A) included the minor allele of Tthllll
and Bcll showed a frequency of 5.2 %. The haplotype
structure was similar to that previously reported [9, 38].

Haplotype associations with HPA axis reactivity

AUCg and AUCi were used as the dependent variable in
separate between-participants ANOVAs with the factors
seCPT group and genotype (with each SNP and each
haplotype as the genotype factor). AUCg was influenced
by a significant interaction of haplotype 2 (Bc/I alone)
and seCPT group (20.77 £ 13.22; 14.99 + 8.42; p = 0.034).
Scrutinising the structure of this interaction effect,
effects analyses showed that carriers of haplotype 2 had
a significantly higher AUCg than non-carriers in the

Table 2 Descriptive data of NR3CT single markers in 218 participants using Haploview

Marker Position ObsHET predHET HWpval % geno MAF Alleles
Tthiin —1427668%4 0463 0458 1.0 99.6 0.355 cT
NR3C1-I —142763714 0356 0331 0368 98.7 0.209 TC
1H —142762357 0.241 0232 0.8032 100.0 0.134 GA
E22E —142760532 0.075 0.072 1.0 100.0 0.037 GA
R23K —142760530 0.084 0.105 0.0437 99.1 0.055 GA
Bcll —142758768 0408 0462 0.0988 100.0 0.362 CG
9beta —142637814 0307 0.306 1.0 100.0 0.189 AG

HWpval p value for Hardy-Weinberg equilibrium, MAF minor allele frequency, obsHET observed heterozygosity, position chromosomal location, predHET predicted

heterozygosity, % Geno genotyping frequency
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a 1A 11 1D 1) 1E 1B 1F 1C 1H

Haplotype 2 (36.8%)

(Bcll alone)

Haplotype 3 (26.4%)
(Tthilll + NR3C1-I + 9beta)

Haplotype 4 (19.5%)
(Bcll + Tthilll + 1H)

Haplotype 5 (6.5%)

(Tthilil + NR3C1-1 + 9beta + E22/23K)

Haplotype6 (5.2%)
(Tthiin + Bell)

Haplotype 1 (61.9%) C T Gla c

Fig. 2 The genomic organisation, sequence variants and haplotype structure of the glucocorticoid receptor gene (NR3CT). a A schematic representation
of the NR3CT genomic organisation. Rectangles represent transcribed exons. Exons 1A-1l are alternatively spliced to a common acceptor site at the start
of exon 2. White exons are non-coding, grey exons represent the coding sequence. The lower section of the panel shows the six haplotypes observed,
their constituent variants and frequencies. Minor alleles are represented by bold red letters. b The linkage disequilibrium (LD) structure of the NR3CT.

LD between two variants are given by colour, blue/grey no LD; white, limited LD; light red to dark red, medium to strong LD. Numbers within the LD
diamonds represent the value of D prime (D') between the two loci. D' is statistic normalised parameters of disequilibrium

seCPT group (20.77+13.22; 14.99 +842; p=0.003),
whereas carriers and non-carriers did not differ signifi-
cantly in the control group (Additional file 1: Table S3).

Association of haplotypes with HR and SBP

To evaluate the influences of genotypes and haplotypes on
SBP and HR, a series of between-participants ANOVAs
were performed. The results are summarised in Additional
file 1: Table S3. There were significant main effects on the
baseline, peak and recovery with higher HR for carriers
of haplotype 2 (72.44 +10.99; p=0.022, 74.05 + 12.25;
p =0.023, 69.50 + 9.48; p = 0.027, respectively) as compared

to non-carriers (68.74 +9.79; 70.65 + 11.74; 66.20 + 9.28).
We observed, independent of the experimental group,
a significantly higher decrease of HR after the water
task in carriers of haplotype 3 compared to non-
carriers (6.93 +9.80; 3.55+ 7.03; p =0.016).
Homozygote carriers of the minor G allele of the
SNP Bcll showed higher baseline HR (72.51 + 11.57;
68.39 £ 9.13; p=0.048). “Bpm increase” was influenced
by a significant interaction of Bcll and seCPT group
(-0.76 £ 7.89; 4.61 £ 9.02; p = 0.029). Simple effects ana-
lyses showed that homozygous carriers of the C allele
had a significantly higher increase than homozygous
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carriers of the G allele in the seCPT group (-0.76 + 7.89;
4.61 £9.02; p =0.006), whereas CC and GG carriers did
not differ significantly in the control group (Additional
file 1: Table S3). In our study, the G allele of Bcll is a
risk allele for higher HR. Carriers did not respond to a
stressor in the same way as the carriers of the C allele,
that is, with an increase in HR (Fig. 3).

There was an interaction between haplotype 2 and group
regarding SBP baseline (115.81 +10.47; 111.61 + 10.74;
p =0.048). Only in the seCPT group, carriers of haplotype
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2 had a significantly higher “SBP baseline” than non-
carriers (115.81 +10.47; 111.61 +10.74; p =0.025). This
effect of haplotype may have emerged only in the seCPT
group because of the higher participant number in there.
There was also an interaction between haplotype 3
and group regarding the recovery SBP (112.54 +11.22;
116.41 + 10.68; p =0.019). Non-carriers in the seCPT
group had higher recovery SBP than the non-carriers
in the control group (116.41+10.67; 112.75+ 11.88;
p =0.049), whereas carriers in both groups did not differ.

140
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Fig. 3 Haplotype 2 (Bcll alone) effects of the warm (control) or ice-cold water (seCPT) condition on SBP, heart rate and cortisol over the course of
the experiment. a Systolic blood pressure in millimeter of mercury after the control (left panel) or cold water (right panel). b Heart rate in beats
per minute after the control (left panel) or cold water (right panel). ¢ Salivary cortisol levels in the control (left panel) or cold water (right panel).
The seCPT or warm water was administered at 23 min and lasted 3 min. In all panels, filled circles are homozygous wild-type (CC) participants and
open circles are homozygous minor allele (GG) participants. Data are the mean + the standard error of the mean
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GR promoter methylation levels and distribution in the
cohort

Methylation analysis was performed on 218 participants.
In total, 14 participants (6 %) were excluded, 3 due to
missing methylation data, 10 for no HR/SBP/DBP data
and 1 for which both data were missing. Average methy-
lation levels of individual CpGs in promoters 1F and 1H
were 2.76 and 1.69 %, respectively, and were directly
comparable to previous reports from human white blood
cells. Methylation levels did not exceed 14 % for any
donor at any position throughout promoters 1F and 1H.
As reported for previous cohorts [15], methylation
levels of individual CpGs in close proximity strongly
correlated in both promoter 1F and 1H (Pearson’s cor-
relation 7 =0.725, p=3.03 x 10 % Fig. 4), confirming
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CpG methylation levels were co-regulated over short
distances, probably in small clusters.

As methylation levels correlated in clusters, promoter-
wide sum methylation levels were investigated. Promoter
1H sum methylation levels were significantly higher in
women than men (Mann-Whitney rank sum test, p < 0.01;
Fig. 4), although there was no difference for promoter 1F
sum methylation levels (Mann-Whitney rank sum test,
p=0091; Fig. 4). This difference was maintained for
methylation summed throughout the two promoters
(p=0.038, Mann-Whitney rank sum test). Although
sum methylation levels for promoters 1F and 1H
were not normally distributed (p <0.001 Shapiro and
Kolmogorov-Smirnov tests), there was a weak but
significant Pearson’s correlation between the two

Fig. 4 Methylation of the NR3CT promoters 1F and TH. a Frequency distribution of the sum of the methylation throughout promoter 1F. Female
donors, open circles; male donors, open triangles. b Frequency distribution of the sum of the methylation throughout promoter 1H. Female
donors, open circles; male donors, open triangles. ¢ Pearson’s correlation coefficients were calculated for all CpG pairs and subsequently plotted
against the physical distance measured in nucleotides, demonstrating that the closer two CpG nucleotides are, the stronger their correlation in
methylation levels. Each data point represents Pearson’s correlation coefficient for one pair of CpGs from all donors. d Pearson'’s correlation in
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promoters (r=0.287, p=0.65x 10™% Fig. 4), suggest-
ing the clusters may also cover complete promoters.

For our linear mixed effects model, methylation levels,
despite the potential loss of statistical power, were treated
as a binary variable after a median split. After median
split, the difference in methylation between the sexes were
reflected in the ~60 %:40 % ratio of males to females in
the low methylation group and the inverse in the high
methylation group. There was no bias in their randomisa-
tion into the seCPT or control group (Table 3).

Methylation level predicts SBP and DBP

To evaluate the link between methylation of the two GR
promoters studied and the stress response, a series of
bivariate analyses, correlation tests and a focused princi-
pal component analysis were performed, identifying the
factors that were subsequently used in a linear mixed
effects model of the stress response (Table 4). SBP was
identified as the variable to be explained, and test group,
methylation group, sex, arousal after the seCPT, arousal
change, tension, discomfort, stress after the seCPT, and
stress change were retained as explanatory variables for
further analysis. A maximum likelihood linear mixed ef-
fects model with an autoregressive matrix for the covari-
ance structure of the residuals was constructed. Model
residuals were normally distributed and centred on zero,
suggesting a valid statistical model. This model con-
firmed the link between methylation levels and SBP, as
well as having a significant effect on SBP evolution over
time (Table 4). The interactions between seCPT group x
time and methylation level x time were assessed but not
significant (p > 0.05). A second mixed effects model was
generated for DBP (Table 4). This model gave a similar
distribution of the residuals and was equally valid. DBP
was significantly associated with the methylation group-
ing and seCPT group (p =0.019 and 0.031, respectively),
although time, arousal and stress were not associated
(p>0.1). The effect of methylation group on SBP is illus-
trated in Fig. 5.

In the statistical model for both SBP and DBP, methy-
lation data remained a valid predictor, despite the loss of
power after dichotomisation. As a separate confirmation
that the sum methylation of GR promoters 1F and 1H
was significantly associated with peak SBP levels,

Table 3 Gender repartition after median split on methylation level

Males, n (%)  Females, n (%)  Full population
Low methylation 60 (56.07) 47 (43.93) 107 (49.08)
seCPT group 42 31 73
Control group 18 16 34
High methylation 44 (39.64) 67 (60.36) 111 (50.92)
seCPT group 27 31 73
Control group 17 21 38
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methylation data was analysed as a continuous variable.
Spearman’s correlations were performed, confirming
this link (rho=-0.243, p =0.00045; Fig. 5). However,
DBP only had a trend towards associating with methy-
lation (rho = -0.122, p = 0.095; Fig. 5).

Association of haplotype and methylation levels

Linear association tests revealed a link between the Bcll
minor allele and promoter 1H methylation (p = 0.00417;
Fig. 6) although this was not significant for promoter 1F
methylation. This link was confirmed using the chi-
squared test on the median split methylation group, where
the homozygous minor allele carriers were associated with
promoter 1H methylation (p = 0.0423).

As the Bcll genotype is part of haplotype 4 (Bcll +
Tthllll + 1H), the association between methylation and
haplotype 4 was analysed. Haplotype 4 tended to associate
with both promoter 1F and 1H methylation levels (linear
association, p =0.067 and 0.066) although the combined
methylation grouping was not linked to the haplotype
(p=0.102, chi-squared test). Similarly, haplotype 5
(TthiIlll + NR3C1-I + 9beta + ER22/23EK) showed an
association trend to promoter 1F methylation levels
(p =0.064, linear association), but did not associate
with promoter 1H methylation levels (p =0.921, linear
association).

As the Bcll genotype has been previously reported to
be in LD with variants in promoter 1H (rs10482614) [9].
Sanger sequencing of this promoter was performed. The
minor alleles of rs10482614 and rs41423247 (Bcll) were
observable at frequencies of 29.3 and 36.2 %, res-
pectively. As previously reported, rs10482614 was in LD
with Bell (Cramer’s association coefficient, V= 0.324,
p value=3.032e-08, =016 and 4 =0.77; Fig. 2).
Although the presence of the minor allele of rs10482614
(G/A) removes a CpG dinucleotide, there was no signifi-
cant link between the presence of the rs10482614 minor
allele and methylation of the 1H promoter (p = 0.316).

Discussion

The individual response to an external stressor is
dependent on a panoply of factors. Here, we report the
impact of GR promoter DNA methylation and sequence
variants on the physiological response to stress. Increased
GR 1F and 1H methylation levels were significantly associ-
ated with decreased baseline blood pressure. GR haplotype
2 (minor allele of Bcll) carriers had a higher cortisol re-
sponse to the seCPT. In addition, GR haplotype 2 carriers
had higher heart rate and higher blood pressure inde-
pendent of experimental group. Haplotype 3 carriers had
a stronger heart rate decrease post stress. A major novel
finding was that the GR B¢/l minor allele was associated
with higher GR promoter 1H methylation.
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Table 4 Linear mixed effects models for systolic and diastolic blood pressure

Value SEM DF t value p value

SBP

Intercept 114.154 1.701 1864 67.115 0

High methylation group -2362 1.344 199 -1.757 0.0083

Time -0.375 0.099 1864 -3.758 0.0002

Arousal —0.052 0.037 199 -1.395 0.0761

Stress 0.028 0.035 199 0.805 0.3964

Test group (seCPT vs control) 2313 1.652 199 1.400 0.2042
DBP

Intercept 67.572 1.067 1864 63.350 0

High methylation group -2.225 0.942 200 -2361 0.0192

Time —0.085 0.068 1864 -1.254 02101

Arousal -0.03184 0.026 200 -1.203 02302

Stress 0.025 0.025 200 1.004 03164

Test group (seCPT vs control) 2.551 1.174 200 2173 0.031
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Fig. 5 NR3CT promoter methylation effects on the systolic blood pressure response to the warm (control) or ice-cold water (seCPT) over the course of
the experiment. Donors were split by median sum methylation levels. Systolic blood pressure in millimeter of mercury after the control (a) or cold
water (b) was administered at 23 min and lasted 3 min. In both panels: filled circles, low methylation group; filled triangles, high methylation group. Data
are the mean + standard deviation. ¢ Correlation between the mean baseline SBP and sum promoter 1F and 1TH methylation levels. All participants are
included, and each data point represents one participant. d Correlation between the mean baseline DBP and sum promoter 1F and TH methylation
levels. All participants are included, and each data point represents one participant. Baseline SBP and DBP mean of the three time-points immediately
preceding the warm or cold water exposure
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The physiological response to stress involves the sympa-
thetic nervous system (SNS) and the HPA axis. The cold
pressor test (CPT), introduced by Hines and Brown, reli-
ably increases blood pressure, a thermoregulatory reflex as
well as a global activation of the sympathetic nervous
system under standardised conditions [39]. Physiological
responses, including vasoconstriction, increased skin con-
ductance [40], and elevated blood pressure [41, 42] are
induced. The addition of a social evaluative component in
the seCPT adds a substantial HPA axis activation. How-
ever, rapid elevations in blood pressure trigger baroreflex
mechanisms counteracting the heart rate increase. Con-
sequently, blood pressure is considered the appropriate
measure of cardiovascular reactivity in the seCPT [43], al-
though we observed differences in both blood pressure
and heart rate. The well-defined timing of the seCPT
allowed us to successfully examine the baseline, immedi-
ate post-stress period and the return to baseline. At

baseline, there were clear genetic and epigenetic effects on
blood pressure. The seCPT induced a strong SNS and
HPA axis response, and both systems were affected princi-
pally by genomic variants. The return to baseline was pre-
dominantly influenced by the genomic sequence.
Genomic variants had a significant effect on cardiovas-
cular parameters. GR haplotype 2 (minor allele of Bcll)
carriers had higher baseline, peak and recovery period
heart rate, and haplotype 3 carriers (minor allele of
Tthilll, NR3C1-I and 9beta) had a stronger heart rate
decrease post stress, both independent of the experi-
mental group. Both of these haplotypes have previously
been explored in detail, corresponding to haplotypes 4
and 2 from Cao-Lei et al. [9] and Kumsta et al. [38].
Haplotype 2 appears to play a central role in determin-
ing the cardiovascular stress response. However, Bcll is
an intronic polymorphism, 646 bp downstream of the
common exon 2 that has generally been found to associate
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with increased GC sensitivity [11, 44], although the mech-
anisms are unknown. When the expanded haplotype 2 [9]
is considered, around half of the carriers should also carry
the minor alleles of the functional rs3806855 and
rs3806854 in promoter 1B and rs10482614 in promoter
1H. In vitro, all three minor alleles reduced promoter 1H
and 1B activity between 50 and 80 % [9]. Methylation of
the entire 1B or 1H promoter had a similar effect, redu-
cing promoter activity by up to 90 %. Logically, carrying
haplotype 2 or having high promoter 1H methylation
would have similar consequences including lower GR
levels and increased cardiovascular stress reactivity and
activity. Although only methylation level was associated
with differential cardiovascular responses to seCPT,
whereas Bcll/haplotype 2 influenced heart rate independ-
ent of experimental group, there will be overlap in the
mechanisms underlying their actions. Nevertheless, SNPs
in a high LD with those investigated in this study might be
regulators of methylation and physiological traits, espe-
cially since genetic variation that leads to methylation and
expression variation at the same locus is not a rare
phenomenon [45]. We hypothesise that the decreased
promoter methylation observed in haplotype 2 carriers
represents a counterbalance to the potential deleterious
effects of the Bcll genotype.

There is a well-established genetic component to vari-
ability in DNA methylation. Methylation quantitative
trait loci (mQTL) are single genetic variants, often SNPs
that correlate, or are associated with, DNA methylation
levels. mQTLs operate over distances as large as 5 kb,
occurring for approximately 2 % of the measured CpGs
and 9.5 % of the expressed regions [45]. In contrast to
Bromer et al. [36], we observed the Bcll minor allele to
correlate with high sum promoter 1F methylation levels.
In our linear mixed effect model of the stress response,
there was a significant interaction between methylation,
genotype and cardiovascular activity. Sum methylation
levels for promoter 1H and 1F + 1H were higher in
women than men, and methylation levels were not nor-
mally distributed in either sex. Sex-specific DNA methy-
lation profiles not unexpected as genome-wide levels are
known to be higher in males [46, 47]. However, locus
specific increases are not limited to males but have also
been reported for women [48-51]. Similarly, increased
age has been linked to both a reduction in global methy-
lation levels, and dramatic genome-wide redistributions
of 5-mC [52]. However, given the narrow age distribu-
tion of our participants, this was not observed. Although
only methylation level was associated with differential
cardiovascular responses to seCPT, whereas Bcll influ-
enced heart rate independent of experimental group,
there might be a functional overlap between the two.
Haplotype 2 and increased 1H methylation would both
be expected to decrease promoter activity not only
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representing a specific GR mQTL, but also an expres-
sion methylation quantitative trait locus (emQTL) and
even further a physiological expression methylation trait
locus integrating the cardiovascular and stress responses
with both genetic variants and methylation levels.
Previous emQTL reports have all covered single CpG
dinucleotides. There is currently contradicting data on
the functional relevance of such limited methylation
changes [53]. For the GR, we have previously shown that
complete methylation throughout each proximal GR pro-
moter efficiently inactivates them [9]. Similarly, methyla-
tion of a smaller (around 125 bp) fragment containing
multiple CpGs also has functional effects, reducing pro-
moter activity to ~25 % of the control, unmethylated
sequence [5]. However, there is currently no evidence that
methylation of a single CpG has functional consequences
on GR expression. The importance of promoter-wide
changes in DNA methylation is supported by recent clin-
ical data from subjects suffering from posttraumatic stress
disorder (PTSD). Whilst Lebonté et al. identified two
CpGs in GR promoter 1F that associated with PTSD,
Yehuda et al. nicely demonstrated that changes occurred
promoter-wide [18, 54]. This is mirrored in both the ro-
dent maternal care paradigm and the healthy human
brain. Screening chromosome 18 that contains the rat GR,
differential DNA methylation was observed in clusters
across broad genomic regions [55]. At the individual CpG
dinucleotide level strong distance-dependent correlations
were found [15], further supporting our interpretation that
DNA methylation changes occur in clusters and levels at
individual CpGs are inter-dependent. These data lead us
to suggest that our emQTL, unlike previous reports, is be-
tween haplotype 2 and a functionally relevant cluster of
methylated CpGs in promoter 1H some 3 kbp upstream
of the investigated region.

The generalizability and relevance of DNA methyla-
tion in peripheral blood samples to other tissues may ap-
pear questionable, as patterns are both locus and tissue
specific. However, depending on the origin of the methy-
lation patterns, it is probable that peripheral blood
methylation levels are epigenetic proxies that mirror pat-
terns in individual tissues of the cardiovascular system
or the HPA axis. There are two plausible, non-exclusive
mechanisms for this. Firstly, peripheral epigenetic varia-
tions may be the results of systemically acting circulating
epigenetic modifiers such as cortisol [56]. Secondly, they
may originate from a commonly programmed develop-
mental precursor tissue. DNA methylation is established
de novo during embryogenesis, when it is particularly
susceptible to environmental influences. Epigenetic
changes across primary germ layers occurring in this
period will result in levels common to several differenti-
ated tissues [57]. We have observed a strong correlation
in methylation levels between ectoderm-derived tissues
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such as the anterior pituitary and the adrenal gland [3],
as well as throughout the different neural tube derived
tissues throughout the human brain [15] supporting the
latter hypothesis. The corollary to this is that peripheral
methylation levels may also be proxies for functional dif-
ference in GC sensitivity in other tissues from the same
developmental origins.

The observation that haplotypes 2 and 3 have specific
and different cardiovascular effects suggests that they act
through different pathways. This concords with prior
evidence that the renal pressure-natriuresis system and
acute sympathetic activation mechanisms influence base-
line cardiovascular traits and cardiovascular reactivity,
respectively [58]. However, the role of GC and the GR in
these mechanisms is unclear. In GC induced hyperten-
sion, pharmacological stimulation and receptor blocking
data exclude direct GC/GR interactions [59, 60], sug-
gesting indirect mechanisms such as oxidative stress or
nitric oxide deficiency [61, 62]. Nevertheless, in vitro GC
have significant effects on the NO system, including re-
ducing endothelial and inducible NOS levels, reducing
L-arginine and co-factor availability as well as inhibition
of transmembrane L-arginine transport [63, 64]. Our
data confirms this link between GC/GR and the car-
diovascular response, albeit potentially via an indirect
mechanism. There was a very clear link between SBP, to
a lesser extent DBP, and methylation of promoter 1B
and 1H. This was confirmed by the observation that GR
haplotype 3 carriers had lower blood pressure after
seCPT and a higher heart rate decrease. This implies
that carriers of GR haplotype 3 may be protected against
hypertension to some extent, even if there does not appear
to be direct GC/GR involvement. Inversely, GR haplotype
2 had a significantly higher baseline heart rate. Indeed, the
constituent Bcll has been linked to hypertension [65].
Cortisol secretion (AUCg) was increased uniquely in car-
riers of the Bcll containing haplotype 2. Our observations
on the functional effects of haplotypes 2 and 3 can be gen-
eralised from our highly homogenous population to other
populations, as these haplotypes have identical functional
effects irrespective of ethnicity [66].

A weakness of our study is the limited number of
SNPs that were investigated; however, the principal
haplotypes previously established in the literature were
readily identified. Similarly, the relatively small number
of donors was counterbalanced by the high homogen-
eity of the young, infrequent-smoking, undergraduate
student population reducing confounding socioeco-
nomic factors.

Conclusions

This is one of the first studies linking epigenetic modifi-
cations of the GR promoter, receptor genotype and
physiological measures of the stress response. In the
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baseline period prior to the water task, there were clear
genetic and epigenetic effects on blood pressure, particu-
larly the Bcll containing haplotype 2 and promoter 1F
and 1H methylation. This was independent of the
experimental group. The water task induced a strong
cardiovascular and HPA axis response in the seCPT
group and both systems were affected principally by the
functional genetic variants. Methylation predicted lower
SBP and DBP evolution over time in response to the
water task. The return to baseline was predominantly in-
fluenced by the genomic sequence. The Bcll polymor-
phism was associated with promoter 1H methylation
levels. Promoter 1F methylation levels did not associate
with any of the observed genetic variants, and as such
are potentially influenced by the environment. Overall,
we have shown that the induction and resolution of the
stress response is controlled by an exquisite mix of
genetic and epigenetic factors.

Methods

Participants

Participants were recruited from the University of Trier
(Germany) via e-mail and poster advertisements as previ-
ously reported [37]. Briefly, 232 healthy non- and low-
frequency smokers (<5 cigarettes per day) with a body
mass index between 19 and 25 kg/m? were recruited, and
218 (115 women and 103 men) completed the experimen-
tal protocol. Subjects with an increased objective or sub-
jective sensitivity to cold and any indication of circulatory
disturbances or cardiovascular problems were excluded.
All participants completed the validated German version
of The Beck Depression Inventory (BDI-II), and do-
nors with scores above 19, consistent with moderate
depression, were excluded [67-69]. As previously
reported, caffeinated and alcoholic drinks, physical exer-
cise and meals were not permitted in the 3 h immediately
preceding the experimental visit [37]. All experiments
were performed between 1:30 and 6 pm. In accordance to
the declaration of Helsinki, the research was approved by
the ethical committee of the medical association of
Rhineland-Palatinate, and all participants gave their writ-
ten informed consent.

Socially evaluated cold pressor test

The socially evaluated cold pressor test (seCPT) was
performed as previously reported [43, 70]. Briefly, par-
ticipants assigned to the seCPT group were asked to
completely immerse their hand in ice-cold (2-3 °C)
water. Participants assigned to the control group were
asked to completely immerse their hand in isothermic
(35—37 °C) water. Participants in the seCPT group were
under the social surveillance of an experimenter; their
perceptions of social evaluation, uncertainty and lack of
control were enhanced by warning them that the
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procedure may be painful, not communicating the dur-
ation of immersion during the test and informing them
that their performance would be recorded for subse-
quent facial expression analysis. Participants assigned
to the control group were not under social surveillance,
and no video camera was present. All participants were
asked to remove their hand from the water after 3 min.
The sampling schedule is outlined in Additional file 1:
Table S2. Immediately before and after cessation of the
experiment, participants were asked to make a subject-
ive rating of arousal, stress, anxiety, tension and activity
on visual analogue scales ranging from 0 (“not at all”)
to 100 (“very much”) in 10-point increments. Saliva
samples were collected using absorbent cotton rolls
(Salivette, Sarstedt, Nuembrecht, Germany). Samples
were stored at -20 °C until analysis. Salivary cortisol
was measured in duplicate using a time-resolved fluor-
escence immunoassay [71]. As previously reported,
intra-assay and inter-assay coefficients of variance were
4.0-6.7 and 7.1-9.0 %, respectively [72]. Heart rate
(HR) and blood pressure (SBP, DBP) were measured
throughout the experiment using the Dinamap System
(Critikon; Tampa, FL, USA) with the cuff placed on the
right upper arm.

Genetic analysis

DNA isolation

DNA was extracted from EDTA anti-coagulated blood
using the salting out protocol of Miller et al. [73]. Genomic
DNA concentration was measured on a NanoDrop 1000
spectrophotometer (NanoDrop Technologies, Rockland,
DE, USA). DNA was stored at —20 °C prior to bisulfite
modification and pyrosequencing or genotyping.

Methylation analysis

Bisulfite modification and pyrosequencing were per-
formed in duplicate as previously reported [15, 20, 74].
Briefly, 400-ng genomic DNA was bisulphite converted
using the EpiTect-Bisulfite Kit (Qiagen) according to the
manufacturer’s protocol. Promoters 1F and 1H were
subsequently amplified by PCR and quantitatively pyro-
sequenced as previously reported [15, 20]. Pyrosequenc-
ing was performed using a PyroMark ID system, and
methylation levels of each CpG dinucleotide was ana-
lysed using the Pyro Q-CpG software (version 1.0.9,
Biotage). Positive controls were generated by incubation
of genomic DNA with SssI, and bisulphite conversion
efficiency was calculated from the conversion rate of
cytosine to thymidine when not immediately followed by
a guanidine as previously described [15, 20].

Genotyping and haplotype construction
The GR polymorphisms TthlIll (rs10052957), NR3C1-I
(rs10482605), the promoter 1H SNP (rs10482614),
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ER22/23EK (rs6189 and rs6190), Bcll (rs41423247) and
9beta (rs6198) were genotyped using a single nucleotide
primer extension reaction, for which specific primers
for each SNP were used in the SNPStart Master Mix kit
from Beckman Coulter and where fragments were
analysed with the CEQ8000 Genetic Analysis System
(Beckman Coulter, Inc., Germany). Detailed information
about primer sequences, PCR conditions and purification
methods are available in supplementary information
(Additional file 1: Table S2). Sanger sequencing of pro-
moter 1H was performed as previously described [9]. All
SNPs were tested for Hardy-Weinberg equilibrium. Linkage
disequilibrium (LD) was assessed for all seven SNPs using
Haploview 4.2 [75], and LD scores were expressed as D'.
Individual haplotypes were reconstructed using PHASE,
version 2.1 [76, 77] (http://stephenslab.uchicago.edu/
software.html#phase), which uses an algorithm based
on coalescence-based Bayesian haplotype inference for
predicting haplotypes from genotype data, combining
modelling strategy with computational strategies.

Data reduction and statistical analysis

GR genotyping data was reduced by dichotymizing the
SNPs with low minor allele frequencies combining the
hetero- and homozygous carriers of the minor allele in
one group. Cardiovascular data (HR, SBP, DBP) was
reduced by extracting the mean increase of dependent
variables from baseline to the peak after the water task
and mean decrease from the peak to the recovery period.
These are referred to as e.g. “SBP peak”, “SBP increase”
and “SBP decrease”. Baseline was considered as average
value of three measurements before water task. Recovery
period was calculated using the three measurements
after the water task. Cortisol data was reduced to the
area under the curve with respect to ground (AUCg)
and increase (AUCI; [78]). All variables were tested for
normality graphically using kernel density plots and nor-
mal Q-Q plots and numerically using the Shapiro and
Kolmogorov-Smirnov tests and the values of kurtosis
and skewedness from the corresponding functions of the
R package “moments”. Principal component (PCA) and
internal consistency analysis (Cronbach’s alpha) were
performed on all questionnaire derived data. Spherical
representations of a correlation matrix and variance in-
flation factors (VIF) were used to identify correlations
and co-linearity between covariates and explanatory vari-
ables. Variables with VIF >5 are considered co-linear and
excluded from all subsequent models and analyses. Con-
founding factors were evaluated in a bivariate analysis
for association with methylation status and test group
using linear regression and Pearson’s or Spearman’s
correlations or the chi-squared test, respectively. Any
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variable showing a significant association (p < 0.05) was
included in a linear mixed effect model as a covariate.
Linear mixed effects model selection was based on max-
imum likelihood, and an autoregressive matrix was
chosen for the residuals covariance structure. All the
analyses were performed using R, version 3.0.1 (The R
foundation for Statistical Computing) except genotype
and haplotype analyses for which general linear models
(GLMs) were computed using SPSS 20.0 to assess the
between-subjects effect genotype as well as the inter-
action time x genotype x groups for the cortisol level.
Differences were considered to be significant when
p <0.05 after suitable post hoc correction in all statistical
analyses. The Bonferroni correction was used for all
bivariate analyses, and Tukeys HSD was used for the
repeated measures ANOVA (from R package Tukey HSD).

Additional file

Additional file 1: Table S1-S3. Table S1. Commonly reported
haplotypes. Table S2. GR SNPs PCR primers and their reaction condition.
Table S3. Association of GR gene SNPs and haplotypes with response of
blood pressure, heart rate and cortisol response effect by SECPT.
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