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Abstract

Background: Retinoblastoma is a malignant tumor of the retina in children <5 years of age and occurs after two
mutations in the RBT gene. The first mutation (M1) is germinal and confers predisposition to the hereditary type,
which is transmitted as an autosomal dominant highly penetrant trait, so 90 % of carriers develop retinoblastoma;
however, 10 % of carriers either do not develop the tumor or develop it unilaterally. Most mutations are point
mutations. Inactivation of the RB1 gene is usually caused by mutations affecting the coding region. Silencing by
methylation of the RBT promoter has been observed in retinoblastoma tumors as a second mutation (M2) and is
classified as somatic epimutation. Germline methylation of the RBT gene promoter was studied in a particular
pedigree of six generations from the paternal side, with incomplete penetrance and bias towards healthy male
carriers and those affected with unilateral retinoblastoma.

Results: The methylation status of the 27 CpGs dinucleotides that constitute the core of the RB1 gene promoter,
analyzed by cloning and genomic sequencing after DNA sodium bisulfite conversion, demonstrated a monoallelic
methylation pattern which coincides with a c. [-187T > G; —188T > G] sequence variant that is found in peripheral
blood lymphocytes and tumor DNA. Unexpectedly, it was the mother who transmitted this variant to two more
generations. Microsatellite markers of D chromosome showed a biparental contribution of both D13 chromosomes
to the retinoblastoma phenotype, conferring double heterozygosity in the affected cases.

Conclusions: The monoallelic genetic-epigenetic finding, the sequence variant, and methylation suggest a
constitutive epimutation and probably a genetic-epigenetic hereditary predisposition for retinoblastoma in this family.
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Background

Retinoblastoma (Rb) is a malignant tumor of the eye that
originates from the developing retina in children <5 years
of age. Its incidence is 1:15,000 to 1:20,000 live births
[1]; 40 % of the cases are hereditary (10 % are due to a
germline mutation in the tumor suppressor RBIgene
(13q14) transmitted by one of the affected parents and
30 % are due to a de novo germline mutation). The
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remaining 60 % of cases are sporadic [2, 3]. The
germline mutation M1 is transmitted as an autosomal
dominant trait with high penetrance; 90 % of mutation
carriers develop bilateral Rb, whereas the remaining
10 % are frequently asymptomatic or they show unilat-
eral Rb (incomplete penetrance (IP)) [3]. The tumor is
developed with the second mutation (M2) in somatic
tissue. In 70 % of the cases, M2 is due to a loss of
heterozygosity (LOH) [2, 3].

In the RBI gene, a very wide range of mutations has
been described in literature. Many of these mutations
are cryptic, which makes their identification difficult.
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Haplotype analysis with polymorphic markers in the
RBI gene or on chromosome 13 is useful in determining
the parental origin of the mutant chromosome, especially
in cases in which the mutation has not been identified [4].
Progenitor-specific effects have been identified in patients
with Rb such as preferential retention of paternal alleles in
tumors and distortion in the transmission of the trait
among the offspring of affected males [5, 6].

Kanber et al. [7] showed that RBI is an “imprinted”
gene, preferentially expressed by the maternal allele. The
imprinted expression of RBI is associated with the
differential methylation of a CpG island in the intron
2 of this gene.

The first report by Greger in 1989 [8] on the silencing
by methylation of the RBI promoter in retinoblastomas
noted the importance of the methylation silencing of
the promoter of a tumor suppressor gene in oncogen-
esis. Subsequent studies have documented methylation
of the 5" region of the RBI gene in retinoblastoma [9].
Ohtani-Fujita et al. [10] showed that in vitro methylation
of the RBI promoter decreased the expression of pRB.
They identified two transcription factors that do not bind
to RBI when the recognition sequence is methylated.

De la Rosa-Veldzquez et al. [11] demonstrated that RBI
is silenced by methylation of the promoter region and that
the CTCF nuclear factor protects this region from methy-
lation. Davalos-Salas et al. [12] reported that ablation or
blockage of the CTCF recognition sites in RBI promoter
leads to quick and consistent gene silencing.

Silencing of the RBI promoter by methylation has
been observed in both sporadic and hereditary Rb tumors
[9, 13, 14]. However, this alteration has not been found in
peripheral blood lymphocytes from those patients, and it
has been classified as a somatic epimutation [14].

In this study, we explored the possibility of the
germline methylation of the RBI gene promoter in a
family that shows incomplete penetrance (IP) in a six
generation genealogy. Furthermore, in this family,
there is a gender bias because there are more males
showing unilateral Rb in comparison to the number of
females suffering from the same condition. These find-
ings were unexpected.

Results

Inheritance pattern

Figure 1 shows the genealogy of six generations (I-VI)
where generations III-V of the RB-F60 nuclear family
are framed. The index case (1) IV-3 was a 38-year-old
patient diagnosed with malignant melanoma in the cer-
vical region as a second neoplasm—one of the most
important cause-specific mortality in long-term survi-
vors of hereditary Rb [15]. He was identified during the
aforementioned screening. The patient developed unilat-
eral right eye Rb (OD) at 9 months of age, the same as
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three of his six siblings (IV-2, IV-4, and IV-7) who were
affected with left eye unilateral Rb. Case IV-2 was
diagnosed and died at 3 years of age; in IV-4 and IV-7,
diagnoses were made at 6 and 3 1/2 months old, respect-
ively. None of the affected patients presented associated
congenital malformations.

The distribution and total number of affected patients
and obligate carriers are indicated for every generation.
The first obligate carrier was a healthy male from gener-
ation I (I-2), the two children from his first marriage were
affected males who died (II-1 and II-2). In his second
marriage he transmitted the mutation to three successive
generations through four healthy carriers (II-3, II-5, II-6
and III-11). The male/female ratio was 3:1. The five
carriers are the parents of ten affected descendants (seven
males and three females) with unilateral Rb. The ratio of
affected males/females is 2.3:1.

Thirty-three percent of I-2 children (II-1 and II-2) are
affected; 50 % are healthy obligate carriers (II-3, II-5,
and II-6). Carrier II-3 had only one male child who was
affected and died. The percentage of II-5 affected chil-
dren was 33 % (1/3 children), and in II-6, 18 % (2/11)
were affected. In contrast, the percentage of affected
children of III-11 (healthy carrier and obligate transmit-
ter of RBF-60) was 57 % (4/7 children).

The total number of family members showing Rb is
found in the lower box of Fig. 1 (seven males and three
females) as well as the obligate carriers (four males and
one female). The overall male/female ratio is 2.75:1.

Methylation pattern

1. The methylation status of the 27 CpGs dinucleotides
that constitute the core of the RBI gene promoter
was analyzed by sodium bisulfite-treated DNA
followed by cloning and genomic sequencing.
Bisulfite converts all unmethylated cytosines to
uracils. The only remaining cytosines are derived
from methylated cytosines in the genomic sequence
[13]. A heterogeneous pattern of DNA methylation
in peripheral blood lymphocytes (PBL) from the
mother, the index case and his siblings, and his
daughter was observed through two generations.
This pattern was also found in the melanoma of the
index case.

2. In 16/27 CpGs of the RBI promoter (1, 2, 3, 5, 8, 11,
13, 14-16, 19, 22-24, 26, and 27), methylation was
systematically observed. The presence of
methylation was found in clones that we
denominate “C” because they present two base
changes in positions: c. [-187T > G; -188T > G]
upstream of the initiating codon [16] (GenBank
Accession L11910.1 GI: 292420) between the 3’
CpG 17 recognition sequence of the activating
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transcription factor (ATF) [17] and the 5’ E2F
sequence [18] aaGTGACGT TTTCCCGCG
changing to 2aGTGACGG GTTCCCGCG. This
change in sequence is shown in Fig. 2.

3. Clones we denominate “W” were observed with
scarce methylation or methylation in CpGs different
from those in “C” clones.

4. The percentage of “C” clones with the c.

[-187T > G; -188T> G] change in each analyzed
sample, fluctuating between 47 and 100 %. In the
nine analyzed samples, basically two methylation
patterns were identified, dependent on the
percentage of “C” clones in each sample. These
patterns are shown in Fig. 3a, b and respectively
correspond to the melanoma and PBL of the
index case. In each of these patterns, the 27
CpGs of the RBI promoter are shown, pointing
out those CpGs in which transcription factors
bind as well as the methylated CpGs.

Figure 3a corresponds to a pattern with 100 % “C”
clones showing methylation in the mentioned 16 CpGs.
This pattern was observed in the DNA from the melan-
oma of the index case suggesting hemizigosity. Figure 3b
shows a mixed pattern and equivalent percentages with
50 % “C” clones and 50 % “W” clones, suggesting monoal-
lelic methylation. This pattern was observed in all family
members including the index case and his daughter.

Figure 3c shows schematically the contrast between
the methylation status among the 27 CpGs of the “C”

clones and the “W” clones. The “W” clones in this figure
were selected from the total analyzed samples to clearly
show the differences in methylation and highlighting the
contrast of methylated CpGs between the two clones. It
is observed that the methylation pattern of the “C”
clones systematically involves specific CpGs where RBI
key transcription factors bind. One hundred percent of
these clones showed methylation in four of the nine
CpGs: 5, 8, 11, and 13, where CTCF binds [11, 12] in
the 14, 15, and 16 CpGs corresponding to the consensus
sequence where the RBF1 and Spl binding sites overlap
[17, 19]; and methylation in CpG 19 is one of the two
CpGs where E2F binds [18] in addition to the methyla-
tion in the Spl CpGs 23-24 recognition sites [20].

In contrast, in the “W” clones, methylation is ob-
served in CpGs where no transcription factors bind or
the percentage that coincides with CpGs of the “C”
clones is remarkably low, as shown in the schematic
representation of Fig. 3c.

Segregation of polymorphic microsatellites

Due to the father’s death (transmitter of the Rb trait),
the corresponding analysis was unable to be performed.
The paternal genotype was deduced from the genotype
found in his offspring. Segregation of all the analyzed
markers showed biological certainty of kinship between
parents and children (haplotypes not shown). Figure 4
shows the genealogy of the nuclear family, and the ana-
lyzed microsatellite markers are listed. The haplotype cor-
responding to markers D13S317 (chromosome 13 q31.1)
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c.[-187T>G;-188T>G] Sequence variant in the promoter of the RB7 gene
between ATF and E2F binding sites
in peripheral blood lymphocytes of the index case
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[21] and D16S539 (chromosome 16 q14.1) [22] in each of
the family members is noted. The difference of haplo-
types in these markers among those affected with Rb
vs. the haplotype of these markers in the other family
members is highlighted as shown in the box on the
right of Fig. 4.

Discussion

The studied family shows an autosomal dominant
pattern characteristic of hereditary Rb with several
family members affected by the condition in each
generation [3]. However, the number of affected mem-
bers (18 and 33 %) in generations II and III is <50 %
as expected in this type of inheritance. The higher
number of affected males with respect to females also
deviates from this ratio. On the other hand, none of the
10 obligate carriers developed Rb and all of those affected
have unilateral Rb. These familial data indicate that this

corresponds to the small but significant number of
families in which Rb is inherited with incomplete
penetrance (IP) [3].

In contrast to what was observed in generations II and
IIL, in generation IV, corresponding to the family of this
study, 4/7 children (57 %) were affected, showing a
change to complete penetrance. However, the moderate
expression of unilateral tumors is preserved as well as
the bias of affected males.

It has been suggested that these biases are due to a
higher mutation rate in spermatogenesis than in oogen-
esis, meiotic drift, and to the existence of imprinted
genes [4-7, 23]. Klutz et al. [24] studied two non-related
families with Rb and IP who carried the same muta-
tion. This showed variation in the phenotypic expres-
sion of Rb and a higher number of affected members
when the father was identified as the transmitter of
the mutant allele.
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A Methylation pattern in the melanoma of the
index case with 100% “C” clones
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Fig. 3 (See legend on next page.)
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(See figure on previous page.)

Fig. 3 a This pattern of methylation found in the melanoma suggests hemizigosity which probably corresponds to the presence of the
maternal-methylate allele and to the absence (loss of heterozygosity) of the paternal allele. This pattern contrasts with that in b observed
in PBL of the index case and his siblings which suggests monoallelic methylation. ¢ The bracket included clearly shows the difference of

methylation between “C" and "W" clones

To identify the paternal germline mutation that has
conditioned IP in the reported family, complete sequen-
cing of RBI would be required because the type of
mutations in the families with IP are not part of the
spectrum of germline mutations found in most families
with Rb and almost every family has its own mutation
[25, 26]. The mutations conferring IP in general cause a
quantitative decrease in the expression or a partial loss
of the RBI suppressor function [3, 10, 17, 24]. It has
been suggested that in families with IP mutations, LOH
is oncogenically insufficient because the homozygosity of
the predisposing allele still retains suppressive activity
and the carriers would be asymptomatic [17, 20]. For Rb
development, a mutation with complete loss of function

in the normal allele is required [17]. Because these
mutations are less common (30 vs. 70 % LOH), the
proportion of those affected in these families may be
lower [3, 17]. This would explain the lower number of
those affected in generations II and III. Another explan-
ation for the lower number of those affected may be
related to the differential expression of RBI, consecutive
to its normal imprinting state [7]. In this case, the pref-
erential expression of the maternal allele could substi-
tute the low expression of the putative paternal germline
IP mutation, which would avoid the development of Rb
in asymptomatic carriers of this family.

Regarding the change of penetrance specifically in the
RB-F60 nuclear family, the possibility that could help
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explain this change is the finding of the c. —-[187T > G;
188T > G] sequence variant between the ATF and E2F
sequences. In the first, Sakai et al.[17] found the G>T
transversion (position 189 upstream from the start
codon) in a family with hereditary Rb and IP, which
allowed identifying the binding site of this nuclear factor
in the core of the RBI promoter, necessary for transcrip-
tional activation of RBI and the oncogenic suppression
[17]. Whereas E2F is involved in gene repression [18],
studies with transgenic reporters have shown that
mutations at a single E2F site are critical for gene re-
pression, further suggesting that this factor may con-
tribute to the regulation of the transcription of RBI
[27]. The change observed in this study is found in
positions 187 and 188, and the transversion is also
different. Mutations in the RBI promoter are rare. In
the ATF sequence, three cases of mutations were
found [4, 25, 26], whereas in E2F, no similar reports
were found [25, 26].

Three aspects stand out in reference to the sequence
variant observed in this family: (a) it involves two
adjacent bases, one in an activator site and the other in
a repressor site; this variant was not found reported
[25, 26]; (b) the variant was unexpectedly found in
PBL DNA from the index case’s mother, who transmitted
it to two generations including all their children (gener-
ation IV) and the index case’s daughter (generation V),
suggesting germline occurrence that has been segregated
with a dominant inheritance pattern; (c) and it coincides
or is associated with methylation mainly of recognition
sequences for transcription factors in the RBI pro-
moter. Methylation is apparently allele-specific because,
in general, clones without this change do not show
consistent methylation.

Both the ATF sequence mutations and the methylation
of the promoter are oncogenic [9, 10, 13, 17], suggesting
that this sequence variant associated with methylation
could also be oncogenic.

On the other hand, the methylation pattern seen in
PBL in this family has similarities with the methyla-
tion pattern reported by Stirzaker et al. [13] in Rb
tumors. This shows methylation in the 27 CpGs of
the RBI promoter, including binding CpGs to tran-
scription factors but with varying methylation density
both among the CpGs and from tumor to tumor. Some
individual CpGs were unmethylated, highlighting the CpG
from E2F. In our study, extensive methylation is also
observed but is more consistent in the CpGs where
transcription factors bind, although the CpG in ATF was
found unmethylated as well as one of the two CpGs in
E2F. However, it is not possible to perform a quantitative
comparison of methylation in specific CpGs because
no quantification was performed as in the study by
Stirzaker et al.
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It is interesting to compare the results with the findings
of Davalos et al. [12] in Fig. 4c regarding the methylation
pattern of cultured cells in which the CTCF binding
sites were mutated in the RBI gene promoter. It was
demonstrated that CTCF protects the promoter from
methylation. There are striking similarities in the
methylation pattern in the promoter from the studied
family with the methylation pattern of the cells lack-
ing CTCF protection, which also showed low expres-
sion levels of pRB. Similar analyses have not been
performed in this family.

The silencing of RBI consecutive to the promoter
methylation reported in Rb tumors [10, 13, 14] and
the gain of methylation in the promoter of this gene
consecutive to mutations in key-binding sites to tran-
scription factors [10-12, 17, 18, 20] would allow us to
suggest that in RBF60, this double finding apparently
in the same allele could correspond to an epimutation
consecutive to the TT > GG transversion positioned be-
tween an activating sequence and a repressor sequence as
previously mentioned.

This supposition is sustainable on the basis that in
some neoplastic diseases with hereditary predisposition,
similar alterations to those observed in this study have
been reported in which sequence variants coexist in
adjacent or distant genes that promote epigenetic modi-
fications, specifically the methylation in the promoters
of specific genes [28—30]. These changes show that in
the etiology of these conditions, very complex genetic-
epigenetic interactions coexist and are involved in the
transcriptional silencing which, among others, is consecu-
tive to antisense transcription [31]. These mechanisms
are helping to understand this new field of epigenetic
inheritance and its hereditary transmission through
epimutations [32, 33].

It should be emphasized that these particular types of
epimutations are hereditary because the epigenetic methy-
lation modifications are secondary to changes in cis in the
gene sequences that occur at the germline level and are
dominantly transmitted to offspring [28, 30, 31].

Speculatively, we suggest that the sequence variant
in RBF60 according to some currently unknown
mechanism induces methylation of the RBI promoter.
This originates a constitutive epimutation [32, 33] because
methylation is found in the melanoma of the index case
and in the PBL. However, this finding in the mother was
unexpected. In fact, she represented the control arm of
the study because no obvious pathological data were
found in the maternal family. As shown in the ge-
nealogy, it is clear that the transmission was only of
paternal origin.

Because the father died, polymorphic markers were
analyzed in an attempt to demonstrate the paternal ori-
gin of the mutant allele. However, the results suggest
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that both parents were carriers of germline mutations.
In the father, this is still unidentified as previously
mentioned but was demonstrated by the IP inheritance
pattern and the mother as a carrier and transmitter of a
probable constitutive epimutation in the RBI gene
promoter.

The biparental contribution is further supported by
the results obtained with the microsatellite markers
because specific segregation was observed not only of
one allele of the paternal D13 chromosome but also
by the specificity of one of the alleles of D13 chro-
mosome of maternal origin, which is segregated with
a unique haplotype in those affected. This suggests a
biparental germinal contribution of both D13 chro-
mosomes to the Rb phenotype. A biparental-specific
share of the alleles of chromosome 16 was also ob-
served, which represents information of additional
interest in this family since deletion of the long arm
of this chromosome (16q) is related to a particular
type of Rb [34].

Conclusions

Affected children of RBF60 family have double heterozy-
gous germline (M1) mutations in the RBI gene. The first
M1 was transmitted by the father and is associated to IP
and is more widespread in males. The second M1 was
the germline “epimutation” (sequence variant and methy-
lation in the RBI promoter) that was transmitted by the
mother, which granted a higher penetrance and heredi-
tary genetic-epigenetic predisposition for developing
Rb, unlike the families of generations II and III that are
only heterozygous for the first M1.

Methods

The RBF60 family, the focus of this study, was identified
through a clinical screening performed at a specialized
oncology hospital to locally determine the frequency and
type of familial aggregation of cancer. In patients with a
history of cancer, a complete genealogical study was
conducted. Familial aggregation of cancer was assessed
using validated clinical criteria [35]. Diagnosis of the
index case from each family was obtained by histo-
pathology as well as diagnosis of the affected relatives
or through the use of clinical records, death certifi-
cate, or family history. The proband or index case (1)
was identified; when at 38, he developed a malignant
melanoma as a second neoplasm. His family was selected
for molecular study to research the possibility of germline
RBI1 promoter methylation for presenting a six-generation
genealogy and unilateral Rb in three successive gener-
ations through healthy carriers and with a higher
number of affected and health carrier males. Informed
consent was granted by all family members for obtain-
ing biological samples.
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Samples

DNA was extracted from PBL from all family mem-
bers except from the father and an affected sister
(both deceased) of the index case. For extraction and
purification of DNA, a Qiagen kit was used. DNA was also
extracted from the paraffin-embedded melanoma of the
index case. For DNA extraction and purification, a Qiagen
kit was used for tissue included in paraffin blocks follow-
ing manufacturer’s instructions. DNA was eluted in water.

Sodium bisulfite treatment

Eight DNA samples from peripheral blood lymphocytes
and one from the melanoma were processed. The reac-
tion to sodium bisulfite conversion was performed for
16 h at 50 °C with 2 pg DNA as previously described
[11-13]. Samples were purified using the Wizard DNA
Clean-up Column System (Promega). DNA was precipi-
tated with ethanol, dried, resuspended in 30 pl of water,
and then stored at —20 °C.

PCR amplification and primers—cloning

The RBI promoter region constituted by an island
consisting of 27 CpGs dinucleotides (position 1634-2020
GenBank accession number and version L11910.1 GIL:
292420) was analyzed. PCR amplifications were per-
formed in a 30 pl reaction mixture containing 2 pl
sodium bisulfite-treated genomic DNA, 10 mM dNTPs,
15 pm primers, 2.5 mM MgCl, and 2.5 U AmpliTaq
DNA polymerase. Thermal cycling conditions were as
follows: 95 °C for 15 min, 95 °C for 40 s, 66 °C for 40 s,
72 °C for 40 s, and 72 °C for 5 min for 33 cycles.
Previously used MIP primers (methylation independent
primers) [12] were Rb forward: 5° TTAGGTTTTTTA
GTTTAATTTTTTAT. Rb reverse: 5 -AACTATAAAA
AAACCCCAAAAAAAAC (the restriction site for cloning
not annotated). The 300-bp amplification product was
purified using the QIAEX II Gel Extraction Kit (Qiagen)
and cloned using the pGEM-T Easy Vector System
(Promega) following the manufacturer’s instructions.
To determine the methylation pattern, eight to ten
individual clones from each of the nine mentioned
samples were sequenced.

Polymorphic microsatellite analysis

Segregation of 16 microsatellite markers was analyzed:
D8S1179, D21S11, D7S820, CSFIPO, D3S1358, THOL,
D2S1338, D19S433, vWA, TPOX, D18S51, Amelogenin,
D5818, and D16S539 FGA (chromosome 1614q21), in-
cluding one from D chromosome: D13S317 (chromosome
13g31.1) [16].

Abbreviations
IP: incomplete penetrance; LOH: loss of heterozygosity; PBL: peripheral blood
lymphocytes; pRB: RB protein; Rb: retinoblastoma.
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