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Abstract

Background: Modification of DNA by methylation of cytosines at CpG dinucleotides is a widespread phenomenon
that leads to changes in gene expression, thereby influencing and regulating many biological processes. Recent
technical advances in the genome-wide determination of single-base DNA-methylation enabled epigenome-wide
association studies (EWASs). Early EWASs established robust associations between age and gender with the degree
of CpG methylation at specific sites. Other studies uncovered associations with cigarette smoking. However, so far

extrapolated to other populations.

methylation of only a few selected CpG sites.

be successfully applied to non-Caucasian populations.

these studies were mainly conducted in Caucasians, raising the question of whether these findings can also be

Results: Here, we present an EWAS with age, gender, and smoking status in a family study of 123 individuals of
Arab descent. We determined DNA methylation at over 450,000 CpG sites using the Illumina Infinium
HumanMethylation450 BeadChip, applied state-of-the-art data processing protocols, including correction for blood
cell type heterogeneity and hidden confounders, and eliminated probes containing SNPs at the targeted CpG site
using 40x whole-genome sequencing data. Using this approach, we could replicate the leading published EWAS
associations with age, gender and smoking, and recovered hallmarks of gender-specific epigenetic changes.
Interestingly, we could even replicate the recently reported precise prediction of chronological age based on the

Conclusion: Our study supports the view that when applied with state-of-the art protocols to account for all potential
confounders, DNA methylation arrays represent powerful tools for EWAS with more complex phenotypes that can also
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Background

DNA methylation is a chemical process where a methyl
group is attached to the DNA at a CpG site. A CpG site
is a DNA region where a cytosine nucleotide is found
next to a guanine in the genome sequence, connected by
a phosphate group. This process is catalyzed by a number
of DNA methyltransferase enzymes [1]. DNA methylation
is thought to be mostly established at an early embryonic
state and then stably propagated through mitosis. How-
ever, genes are known to be dynamically regulated by a
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variety of factors including modifications of DNA and his-
tones. During mitosis, maintenance mechanisms ensure
that symmetrically methylated CpGs are reestablished in
both daughter cells. Most genomic methylation patterns
are thought to remain largely unchanged across tissues
and throughout life, changing only in localized settings
under specific conditions as cellular processes are acti-
vated or shut down [2]. For example, during mammalian
development, most CpGs remain methylated while CpG
islands located in the promoters of housekeeping genes
are hypomethylated [3]. However, recent studies suggest
that changes in DNA methylation, possibly in reaction to
changes in lifestyle and environmental factors, can result
in both global and localized epigenetic changes [4-6].
DNA methylation is one of the most commonly stud-
ied epigenetic regulation mechanisms and is involved in
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the regulation of many biological processes through the
regulation of gene expression. One of the main roles of
epigenetic modifications through DNA methylation is to
control gene transcription in response to external and
internal stimuli by targeting specific regulatory DNA
bases, such as promoter and enhancer regions [7-9]. An-
other important biological process that is controlled by
DNA methylation is the maintenance of gene imprinting
[10]. This is a process where CpG sites are differentially
methylated depending on their parental origins, which
are not equivalent for paternal and maternal genomes.
DNA methylation has also been known to be involved in
phenomena like X-chromosome inactivation where one
of the two copies of the X chromosome present in fe-
males is inactivated [11]. The global DNA methylation
landscape is quite stable throughout the genome in
mammalian embryos [12]. In human preimplantation
embryos, however, the paternal genome is dynamically
reprogrammed through temporary predominant demeth-
ylation of the majority of CpGs that is later reversed [12].
It was shown that the majority of this genome-wide de-
methylation is complete at the two-cell stage and that the
demethylation process is much faster in males than in fe-
males [13].

A single CpG site in a single cell can be either methyl-
ated or unmethylated (binary mark). However, since
there are two copies of each chromosome in every cell,
between which most methods to determine CpG methyla-
tion cannot distinguish, any specific CpG site in a single
cell can be found in a methylated, a hemi-methylated, or
an unmethylated state. Moreover, most methylation mea-
surements are not done on DNA from a single cell but are
determined as an average methylation level of an ensem-
ble of cells, including potentially even different cell types.
Thus, the numeric value of the methylation state of a
given CpQG site is generally represented as the fraction of
sites that are methylated in any given sample, often re-
ferred to as the B-value.

Recent advances in experimental techniques, such as
the development of reduced representation bisulfite se-
quencing and of array-based DNA methylation assays,
allow to determine DNA methylation on a genome-wide
scale in hundreds or even thousands of individuals [14].
Using an epigenome-wide association study (EWAS) ap-
proach, differentially methylated DNA regions that are
associated with phenotypes of medical interest can then
be identified. EWAS with complex disorders, such as
obesity [15-17], diabetes risk factors [18], rheumatoid
arthritis [19], and metabolic traits [20] have already been
reported. Differential methylation has also been linked
to numerous other phenotypes, including smoking
[21-24], age [25-30], and gender [31-33]. DNA methyla-
tion has even been shown to be a precise predictor of
chronological age [34,35]. Although it is likely that many
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associations between DNA methylation and phenotype
represent a general phenomenon, population-specific
differences may exist and need to be addressed. In this
paper, we are interested in identifying and replicating
DNA methylation associations with age, gender, and
smoking in a new dataset with individuals of Arab
ethnicity.

As the technology used in the quantification of epigen-
etic modification is advancing in terms of throughput
and coverage, the use of state-of-the-art data processing
methodology is essential. This methodology should take
into account the various biological, environmental, and
technological factors involved. In this paper, we combine
a series of preprocessing steps to ensure that potential
sources of experimental bias are addressed in the proper
context, and that results are independent of systematic
technical variations. Biological confounders, such as dif-
ferences in cell type composition, need to be accounted
for in such analyses. Experimental artifacts, both, known
systematic errors and confounders of unknown origin,
can also contribute to this problem and require adequate
preprocessing before subsequent analysis. A preprocess-
ing pipeline was therefore applied to a dataset that we
collected from a population of consanguineous families
of Arab origin, prior to performing a comprehensive
genome-wide association study of epigenetics with the
phenotypes age, gender, and smoking status.

Results

Study population and data collection

The study’s subjects consist of Qataris who are natives
of the Arabian Peninsula, a region that is part of the
Middle East. Most of the population descended from
several migratory tribes that came to Qatar in the
eighteenth century to escape tough conditions of the
nearby areas. The ancestral background of the Qataris is
a combination of mostly Bedouins, Persians or South
Asian mixture, and African-derived Qataris which form
a quite broad genomic makeup. The Qatari population
is characterized by a large number of consanguineous
families sharing the same ancestor, often between first or
second cousins. The study population was selected from
two different datasets, which were collected initially for
genetic family-based studies on type 2 diabetes and obes-
ity. Initial contacts with probands were made through
their regular follow-up visits to the Qatar Diabetes Associ-
ation (QDA), a secondary health-care center that provides
patients care, education, and support. Probands were
asked to complete a patients” information sheet to include
full name, age, date of birth, gender, address, telephone
number, and number of family members. Home visits
were then arranged 2-3 days before the visit to collect
blood samples and phenotypic information from all family
members.
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One hundred and twenty-three adult individuals of
Qatari nationality, including 72 females with mean age
39+16.9 and 51 males with mean age 36.3 £ 17.2, were
investigated. Phenotype measurements included age,
gender, body mass index (BMI), and smoking status
(self-reported). The mean body mass index of the fe-
males was 28.3 + 6.2 kg/m” and of the males was 29.2 +
7.2 kg/m> The dataset comprised 13 smokers, all of
whom were males, and 108 non-smokers. The dataset
consisted of 16 families of various sizes having a variety
of complex pedigree structures. All the subjects also
responded to general health and lifestyle questionnaires.

We obtained DNA from whole blood samples and sub-
mitted them both to genome-wide methylation array ana-
lysis and to whole-genome sequencing, all performed at
[Mumina Inc. (San Diego CA, USA) on a fee-for-service
basis. Methylation measurements were done using the
[lumina Infinium HumanMethylation450 BeadChip Kit
array (referred to as 450 K array in the following). Whole-
genome sequencing (WGS) (40x coverage) was performed
on the Illumina Hiseq 2500 platform. All measurements
were done following standard Illumina protocols and pro-
cedures (see Methods). In total, we obtained methylation
data for 485,577 sites and 14,595,042 genetic variants,
called in at least one individual at a quality cut-off of q20.

Data processing
Based on the comparison of six different analysis pipelines
[36], the Lumi:QN + BMIQ pipeline was shown to be the
most optimally designed for preprocessing of Illumina
450 K array data and was therefore applied here (see
Methods). Briefly, the methylation data was first cleaned
using a series of filtering steps. This included the exclusion
of non-CpG sites and low quality sites and samples. Based
on the WGS data, we further set all individual CpG sites
containing a SNP in the probe locus (+/-110 nucleotides
of the CpG site) to missing. This resulted in a total of
468,375 sites and 123 samples for the analysis (no samples
were excluded). The effects of color bias adjustment and
quantile normalization are shown in Additional file 1:
Figure S1. Type 2 probes constitute 72% of the probes
(two different color channels) while the remainder
(28%) are type 1 in which both signals are obtained
using the same color channel. BMIQ normalization is
used so that type 1 peaks are matched to the normalized
type 2 peaks at the methylation extremes. The effect of
this normalization on our dataset can be seen as an ex-
ample in Additional file 2: Figure S2 where the differ-
ence in peaks can be seen at the fully methylated end in
the form of a bimodal peak (a) whereas this effect is re-
moved after normalization (b).

Since DNA was collected from whole blood, white
blood cell heterogeneity needs to be corrected for. The
method described by Houseman et al. [37] allows the
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estimation of the cell type composition from whole-
genome methylation data. The fraction of six cell types,
namely monocytes, granulocytes, NK cells, B cells, CD8"-T
cells, and CD4"-T cells, were determined for each subject
using the methylSpectrum software. The resulting distri-
bution plots of the white blood cell coefficients for our
dataset are presented in Additional file 3: Figure S3.

In order to capture any remaining potential con-
founders in the methylation data, principal component
analysis (PCA), as described and implemented in the
software package MethylPCA [38], was used. The first
ten principal components (PCs) were computed for each
subject after first regressing out the known covariates
age, gender, BMI, smoking state, and the blood compos-
ition coefficients. These ten components captured over
99% of the total variance that was still present in the
data. Additional file 4: Figure S4 shows the estimated
percentage of the variance that was captured by each of
the individual PCs. In order to determine the association
between CpG methylation and the different phenotypes
of interest, we used linear regression models while account-
ing for the various covariates, white blood cell composition
and principal components (see next section).

Smoking-related differential methylation

To identify the relevant covariates to include into the
final model, we evaluated the effect of including the es-
timated white blood cell coefficients and the PCs on
the p value distribution. Details are described in the
Methods section. Figure 1 shows the association tests
for the smoking phenotype in the form of Q-Q plots
and the inflation factor lambda values for different lin-
ear models [39]. The cell composition coefficients were
added to the model in Figure 1b, which reduced the in-
flation factor from using the base model (Figure 1a)
from 1.32 to 1.18, verifying the confounding effect of
cell-type variability. The inflation factor was further re-
duced between Figure 1b and 1c from 1.18 to 1.03 by
adding principal component 1 (PC1) as additional covari-
ate, suggesting that there were still unmeasured sources of
variability other than cell composition present in our data-
set that needed to be accounted for.

As can be seen from the Q-Q plot in Figure 1c, asso-
ciations of methylation with respect to tobacco smok-
ing deviate from the null at low p values. The top three
hits were observed at methylation sites within the
AHRR gene (cg0575921, ¢g26703534, cgld647125; p
values between 7.47 x 10”7 and 3.88 x 10~°), thus repli-
cating previous findings reported in other populations
[21-24]. Table 1 shows this data along with other previ-
ously reported smoking-associated genes that did not
rank highest in our data but still showed an association
with smoking in our dataset at a false discovery rate of
FDR <0.05.
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Figure 1 Q-Q plots for the association between smoking and each methylation site: a) before performing PCA (including age, gender,
BMI in the model), inflation coefficient = 1.32; b) before performing PCA (including age, gender, BMI and cell coefficients for monocytes
and granulocytes), inflation coefficient = 1.18; and c) after performing PCA and (including age, gender, BMI, monocytes and granulocytes,
PC1), inflation coefficient = 1.03.

Although we have only a limited number of smokers
in our dataset, we believe that since we are not claiming
that our findings are a new discovery but merely repli-
cating a specific CpG locus that was previously reported
in a number of publications, statistical power is not as
essential as it would be when claiming new discoveries.
Actually, the fact that cg05575921 in AHRR turned up
as the most significant hit in our data (as in previous
studies), regardless of the limited number of subjects,
suggests that the signal is quite strong. We performed a
Wilcoxon rank test as a sensitivity analysis to show that
our associations are quite robust even for this small
number of subjects (i.e. accounting for potential effects
of violation of normality). Since our p values relative to
the rank test p values remained nominally significant
when using a statistically less powerful but more robust
test (data not shown), we can confirm that our small
sample size and the deviation from normality do not
alter the main findings/conclusions presented in this

paper.
Gender-related differential methylation

We next conducted an EWAS to identify specific sites
that exhibit a gender-specific pattern. A total of 9,630

Table 1 CpG sites associated with smoking

CpG Gene p value Reference
€g05575921 AHRR 747 %107 [21,23,24]
€g26703534 AHRR 720%107° [21]
914647125 AHRR 388%107°

903636183 F2RL3 513x107* [21,22]
€g19859270 GPR1 185x 1072 [22]
€g21161138 AHRR 208% 107 [21,23]
€g14817490 AHRR 368x 107 [24]
€g10399789 GFn 580% 10 [21]

CpG sites showed genome-wide significant association
with gender using a conservative Bonferroni threshold of
1.07 x 1077 (0.05/468,375). Out of these 9,630 significant
CpG sites, 7,155 were mapped to genes according to the
[lumina Human Methylation 450 K annotation database
that was assembled using data from public repositories
(Additional file 5: Table S1). 6,881 sites were located on
the X and Y chromosomes while 274 sites were located
on the autosomal chromosomes (Additional file 5: Table
S2). Table 2 reports the number of significant sites per
chromosome indicating that gender-related methylation
sites are widely spread across the human genome.

We replicated 489 of the identified gender-associated
CpGs (p < 0.05/468,375) reported by Liu et al. [31], includ-
ing the previously reported genes like TLEI and TDGFI
[31]. The top 10 autosomal gender-related sites included
three hits on the previously reported TLEI gene (loci:
€g20926353, cg0865632, cgl4095100) with p values 2.86 x
107, 2.34 x 107>, and 8.5 x 10™*, respectively. TLE1 is a
transducin-like enhancer that is important in hematopoiesis
and has been involved with acute myeloid leukemia. Inter-
estingly, a gender bias has been observed in the associ-
ation of TLE1 and different cancers such as acute myeloid
leukemia and synovial sarcoma [31].

Age-related differential methylation

Our EWAS between whole blood DNA methylation and
age identified 828 significantly associated CpG sites after
Bonferroni correction (p<1.07 x 1077). Figure 2 shows
the Manhattan plot of the EWAS for age. The most sig-
nificant age-related differentially methylated site in our
study was detected on chromosome 6 in the ELOVL2
gene (ELOVL fatty acid elongase 2) which conforms with
another recent study [39] that focused on only monocyte
and T-cell lines as opposed to whole blood (as in this
paper). A comparison of our findings with three previ-
ously published EWAS with age is shown in Figure 3.
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Table 2 Number and proportion of significant CpG
associations with gender by chromosome

Chromosome number Number of sites Proportion of sites

1 26 0.000558
2 15 0.000435
3 18 0.000720
4 12 0.000592
5 15 0.000621
6 18 0.000494
7 16 0.000536
8 8 0.000385
9 9 0.000924
10 9 0.000372
11 13 0.000454
12 15 0.000615
13 19 0.001560
14 6 0.000400
15 5 0.000330
16 10 0.000457
17 23 0.000828
18 7 0.001189
19 20 0.000785
20 5 0.000485
21 1 0.000238
22 4 0.000470
X 6,669 0.599
212 0.510

Considering the overlap between our 468,375 sites and
other studies, we replicated 12 out of 88 CpG loci identi-
fied by Bocklandt et al. [40], 23 out of 490 CpG loci identi-
fied by Bell et al. [26], and 102 out of 162 CpG loci
identified by Florath et al. [30], to be highly associated
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with age. Common associations, found in our study and in
the study of Bocklandt et al. [41], were highly significant
(ie. cg09809672 with p value 1.17 x 107", cg21801378
with p value 4.5x107'¢, and cg00059225 with p value
9.47 x 107*?). The top locus reported in [30], cgl6867657,
ranked first in our list as well with a p value of 4.65 x 107",
Also, the top third locus reported in [30], ¢g21572722,
ranked third in our list as well having a p value of
7.13x107%°, The four common age-associated loci
among the four studies were cg21801378, cg01820374,
¢g06291867, and cg04084157 and ranked 38th, 476th,
530th, and 785th, respectively, with p values ranging
from 4.5 x 107'° to 6.97 x 10™% in our study. A complete
table of all age-correlated sites with p values below 1 x 10~
(with those replicated in other studies highlighted in
yellow) is presented in Additional file 5: Table S3.
Several studies have attempted to use epigenetic data
as a predictor of age [34,41]. Bocklandt et al. [40] used a
regression model with just two loci that explained a
large portion of the variance in age to predict the age of
an individual with an accuracy of 5.2 years. More re-
cently, Hovarth et al. [34] developed a tool that uses the
methylation status of 353 CpG sites to provide a remark-
ably accurate age estimate (correlation = 0.97) of the per-
son the cells came from. This tool is a multi-tissue age
predictor that is applicable to methylation data from
many tissues and cell types. We extracted the 353 dis-
criminative “clock CpGs” from our dataset and com-
puted the age of our study participants using the tool’s
identified regression model. To measure the predictive
accuracy of the model, we used the Pearson’s correlation
coefficient between the DNAm age and chronological
age and the median absolute difference between DNAm
age and chronological age. These computed measures
were correlation =0.97 and error = 3.7 years which are
very close to those previously reported values (correl-
ation = 0.97 and error =2.9 years). Figure 4 shows the
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Figure 2 Manhattan plot for an epigenome-wide association of methylation with age. Associations with p values <1.0675x 10~ are shown
as red dots for sites that are hypermethylated and blue dots for sites that are hypomethylated.
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Bell et al

This study

et al. [40], Florath et al. [30]).

Figure 3 Venn diagram comparison of age-related differentially methylated loci among different studies (Bell et al. [26], Bocklandt

Bocklandt et al
Florath et al

correlation plot that replicates this previous finding in
our Arab dataset. Another study used the methylation
values of only three CpG sites for chronological age pre-
diction [35]. Applying the multivariate equation of that
study to our data as well, we found a 0.85 correlation

R=0.97

Chronological Age
20 30 40 50 60 70 80

DNA mAge

Figure 4 Correlation plot of DNAm age and chronological age.
DNA mAge was calibrated using the regression model identified

from the 353 clock CpGs [12].

between predicted age and chronological age with a me-
dian absolute error of 7.6 years.

Discussion

We have combined a number of established techniques
to put together a comprehensive pipeline for the prepro-
cessing of epigenetic data and the subsequent analysis
for EWASs as indicated in the recent review of appropri-
ate EWAS design [41]. We then used these preprocessed
data to perform an EWAS on the phenotypes gender,
age, and smoking. Our results have replicated and vali-
dated previous findings that were previously identified in
the European population. This shows consistency in the
effect of these findings in the Arab population under dif-
ferent genetic backgrounds and environmental exposures
ensuring validity of the methods applied in the context of
epigenome-wide association studies.

The major contribution of this paper is to replicate
previous associations of CpG methylation with various
phenotypes such as age, gender, and smoking which is
important in the context of epigenetic studies. The nov-
elty in this study lies in the application of this type of
epigenetic studies on an Arab population. This region of
the world has not been explored previously, and we were
interested in investigating whether established methods
and results are applicable to this interesting population.
Our findings encourage expansion of existing projects to
accommodate further studies in this underexplored re-
gion of the world.



Zaghlool et al. Clinical Epigenetics (2015) 7:6

However, we are also aware of some limitations of the
present study. For instance, the family structure present
in our Qatari dataset (constituting 16 families) displays a
high degree of relatedness, which is due to the fact that
many of them are family members because of the small
size of the Qatari population and cultural traditions. The
estimated rate of consanguinity in the Qatari population
is 54% [42]. This is quite common in this region of the
world but still needs to be accounted for in the analysis
of such a dataset. Relatedness can be considered as a
confounder in the data and a known cause of Q-Q plot
inflation, impacting the association results. Relatedness
measures can be expressed in the form of family trees or
clusters with some score indicating relative similarity
among individuals. An approach of capturing family
structure in a condensed form is by computing the princi-
pal components (PCs) of the methylation data, although
in principle, this can also be performed using the genetic
data. The principal components method is known to cap-
ture most of the variability in the data in the form of a
number of components as described in the Methods
section. Visualization of the components against family
structure suggests that some of the first ten PCs actually
do capture that information (data not shown).

An alternative to computing PCs to account for family
structure would be to use a family-based tool such as
“Imekin” which implements a linear mixed effects model
using a kinship matrix [43]. This tool accepts a family
pedigree in the form of a kinship matrix as an additional
parameter to the linear mixed effects model and com-
putes the association between each methylation site and
a phenotype of interest. When comparing the associ-
ation results of the linear model described in this paper
and the same model parameters applied to lmekin but
with the addition of family structure, we found a great
similarity in the distribution of p values, inflation factors,
and even in the robustness in the most significant
methylation sites in terms of both ranking and p values.
Thus, we consider either approach suitable in account-
ing for a potential relation between methylation and
family structure. However, since PCA is designed to cap-
ture any confounders that may exist in the data, the
extra benefit here is that this might capture any add-
itional hidden variation.

The presence of genetic variation (SNPs) can affect the
regulation of methylation and the consequent expression
of a phenotype and needs to be addressed when drawing
conclusions on methylation-phenotype correlation. More-
over, the presence of SNPs within the probes themselves
can result in technical artifacts. The common approach
to this problem is to eliminate CpG’s based on the SNP
annotation of the Illumina manifest. However, this data
is based on tagging SNPs, and it may also be incomplete.
Furthermore, it does not fully cover non-Caucasian
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genomes. In contrast to previous studies, one of the
strengths of this paper is the availability of whole-genome
sequencing data that is both comprehensive in terms
of coverage and specific to our Arab population. This
allowed us to correctly remove probes containing poly-
morphic SNPs, ensuring that all potential confounding
genetic variants were eliminated prior to the analysis.
In addition, array-based methylation should be vali-
dated by another technique. However, since we are
reporting associations that have already undergone
such validations in studies we cite, repeating such a
validation would be beyond the scope of our present
paper. Moreover, Illumina has shown high correlation be-
tween HumanMethylation 450 K and whole-genome bisul-
fite sequencing-based methylation [44].

The use of white blood cells as a source for DNA
methylation measurement does not take into account
the white blood cell distributions that has been shown to
have a strong correlation with the methylation signa-
tures [37]. For this reason, we employed a known algo-
rithm for white blood cell count correction before any
subsequent analysis. Our EWAS indicates that the influ-
ence of both age and gender on methylation is site spe-
cific. Both phenotypes display a widespread association
throughout the genome and are not limited to specific
autosomes. On the autosomes, our data indicated that
more sites are highly methylated in females compared to
males which is in concordance with a previously pub-
lished study [31].

Numerous studies observed both age-related hyperme-
thylation [26,27] and hypomethylation [28,29], which we
also replicated in our study. Moreover, DNA methylation
patterns were shown to increase with age and contribute
to age-related diseases such as neurological diseases.
Previous studies [25] have analyzed methylation data to
test for the association between methylation and age.
They clustered the CpGs into classes and evaluated the
association of the mean methylation of the CpGs for
each class with age. This causes the results to be sensi-
tive to the clustering method depending on the segrega-
tion into particular classes, thus capturing only crude
associations and possibly missing specific CpGs of inter-
est. Instead, we preferred performing an epigenome-
wide association study similar to the ones for the other
phenotypes.

Our replication in an Arab population of age prediction
with a very high correspondence to what was previously
reported [35,40] has particular strength in confirming that
these few CpGs do indeed determine or carry information
that is age associated independent of population-specific
genetics and differing environmental exposures. Although
Bocklandt et al. [40] cover a wide range of populations/
ethnicities in addition to different cell types and tis-
sues, none of the datasets they used to design their age
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predictor regression model included datasets from sub-
jects of Arab descent. Therefore, we can be confident that
given their algorithm was not trained on similar datasets,
yet was able to produce age prediction rates very close to
theirs, the same methods can successfully also be applied
to non-Caucasian datasets.

Methylation-specific protein binding patterns were found
within the aryl hydrocarbon receptor repressor (AHRR)
gene with the highest level of changes associated with
tobacco smoking. Even maternal smoking during preg-
nancy had an impact on the epigenome-wide DNA
methylation in newborns [23] particularly in the AHRR
gene. The AHRR gene codes for a protein that mediates
dioxin toxicity and is involved in regulation of cell
growth and differentiation and the modulation of the
immune system. The target of AHRR, the aryl hydrocar-
bon receptor (AHR) is a known protein that is a tumor
suppressor, mediating detoxification of carcinogenic
agents causing tobacco-related lung cancer [45]. Our
findings are also in line with other studies [21,22] regard-
ing the F2RL3 gene, which was first reported to be signifi-
cantly less methylated in smokers due to the coagulation
factor II receptor-like 3 gene and codes for protease-
activated receptor 4 (PAR4). It is known to affect platelet
activation and other cardiovascular mechanisms such as
intimal hyperplasia and inflammation, which are all valid
mechanisms for smoking-induced pathology [46].

Conclusions

In conclusion, we have collected blood samples and
phenotype data from an Arab cohort of Qatari origin.
The data was processed using established techniques to
obtain both methylation measurements and sequencing
data. Extensive quality control steps were performed to
handle all types of biases ranging from subject-subject
variability to blood cellular heterogeneity to hidden con-
founders. After thorough processing of our dataset, we
were able to replicate numerous previously reported
methylation sites that were reported to show association
with a number of phenotypes namely, age, gender, and
smoking.

Methods

Methylation data collection

Seven milliliter of whole blood was drawn from the par-
ticipants and kept in EDTA anticoagulant tubes for
DNA extraction. Genomic DNA was extracted with the
Qiagen Midi DNA blood extraction kit (Qiagen, spin
protocol UK—catalog number 51183) with 2 ml of
whole blood including the recommended proteinase K
and RNase A digestions. DNA extraction was performed
at the Weill Cornell Medical College in Qatar clinical la-
boratory following the manufacturer instructions. DNA
purity and concentration were measured using Qubit 2.0
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fluorometer Broad Range kit from Invitrogen (Qubit
dsDNA BR Assay kit—catalog numbers Q32850 and
Q32853). The DNA samples were stored frozen at —80°C.
A 7 ug of the DNA samples were then prepared per sam-
ple in a concentration of 70 ng/ul, and the samples were
then shipped frozen to Illumina for measurement of DNA
methylation on a service for a fee basis, using Illumina’s
Infinium HumanMethylation450 BeadChip for interrogat-
ing over 485,000 methylation sites. This platform quanti-
fies CpG site methylation using the Illumina DNA bead
array technology and DNA bisulfite conversion [47]. The
Infinium methylation array uses beads with target-specific
probes designed to interrogate CpG sites. The array con-
tent included 485,577 assays, out of which 482,421 sites
were CpG sites, 3,091 were CpH sites, and 65 were con-
taining SNPs. Based on expert recommendations, CpG
site coverage was both comprehensive across complete
gene and CpG island regions and biologically significant/
informative.

Whole-genome sequencing data

Data for the SNPs present in each of our subjects was
obtained through whole-genome sequencing (WGS) by
Hlumina using the Hiseq 2500 platform. Paired end se-
quence reads were obtained with the average depth of
coverage of 40x. Sequences were processed by CASAVA
(Consensus Assessment of Sequence And VAriation), a
propriety bioinformatics pipeline of Illumina, to obtain
variant sets. In our study, CASAVA version 1.9 was used
which involves aligning of reads to the reference gen-
ome, sorting, indexing, realignment, and variant calling.
Paired end reads were aligned to the reference human
genome of NCBI build 37 using the aligner ELNAD v2
(Efficient Large-Scale Alignment of Nucleotide Data-
base) in the CASAVA pipeline. Variant calling utilizes a
probabilistic algorithm to call the genomic consensus se-
quence and compares it to the reference sequence in
order to identify homozygous or heterozygous SNPs. For
each of the variants called, CASAVA also provides quality
measures. The SNPs were filtered based on the quality
score provided, to retain variants with error probability
less than 0.01.

Preprocessing pipeline

Confirmation checks to ensure our sample integrity first
included verifying Mendelian inheritance by looking at
the whole-genome sequencing data. Trios were checked
for Mendelian violations among their SNPs, and the
average acceptable percentage of violations did not ex-
ceed 10% in all trios. Some initial filtering was per-
formed on the Illumina-provided methylation data. The
percentage of detected sites was on average 99.5% (with
a p value <0.01). No samples were excluded based on
the number of detected sites. The overall signal intensity
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and the distribution of M values of the samples were
then inspected. The M value is simply a logit transform
of the B-value, which are both used interchangeably
[48]. No samples had low overall signal intensities or ab-
normal methylation profiles.

Initially, there were 485,577 probes, and after filtering,
482,421 CpG probes remained (3,091 were CpH probes
and 65 probes tag SNPs from Illumina manifest). 11,135
CpG probes were on the X chromosome, and 416 were
on the Y chromosome. The X and Y chromosome probes
were only filtered when studying differential methylation
for smoking and age, but not gender, to remove potential
bias from the possibility of different proportions between
females and males. Then, the detection p values of the
methylation sites were inspected. They reflected the
strength of DNA hybridization over the background (com-
paring the CpG intensity with the intensities of negative
control probes). A total of 2,495 probes had a detection p
value greater than 0.01 in 5% of the samples and were ex-
cluded. After all the filtering, 468,375 methylation sites
remained under consideration. Genetic variants or SNPs
in probes or CpG sites can interfere with methylation
readouts by affecting probe binding. Therefore, we set all
methylation data to missing values whenever a genetic
variant existed within the region of +/-110 base pairs of
the CpG, based on our whole-genome sequencing data.
These accounted for about 0.5% of the methylation sites
that were excluded.

There are different sort of biases in the Infinium
HumanMethylation450 BeadChip assay such as color
channel bias and probe type bias. Numerous methods
exist to handle different kinds of biases, and there is an
established best practice to handle such biases [36]. The
Lumi:QN + BMIQ pipeline was applied to our dataset as
prior processing. This pipeline was implemented and ap-
plied to our dataset using the bioconductor “lumi” pack-
age [49]. The Infinium HumanMethylation450 BeadChip
assay includes Infinium I and Infinium II study designs.
In the former design, two different probes (correspond-
ing to the methylated and unmethylated alleles) located
on two different bead types and the methylated and
unmethylated signals are generated in the same color
channel. In the latter design, a single base extension
from the 3" end of the probe sequence (which is one
base upstream of the query base) will result in either a
red or green signal depending on whether the query site
was unmethylated or methylated. Illumina uses two
colors to label the final extended base following the
hybridization of methylated or unmethylated probes. As
a result, some of the CpG sites are measured in the red
channel (final extended bases are A or T), whereas
others are measured in the green channel (final extended
bases are C or G). The methylated and unmethylated
probes of the same CpG site have the same color. Due
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to the difference in labeling efficiency and scanning
properties of two color channels, the intensities mea-
sured in two color channels might be imbalanced. The
basic idea of color balance adjustment is to treat it as
the normalization between two color channels. Because
the two color channels have a different number of
probes that do not match each other, the regular quantile
normalization cannot be directly applied, instead the
smooth quantile normalization method is used [49].

The total CpG methylation can differ significantly
from sample to sample in different conditions. Quan-
tile normalization (QN) is used to reduce between sample
variations and centers the signal between arrays (correcting
for influence of position on the slide). However, directly ap-
plying the normalization methods to the methylation data,
like M value or beta value, is inappropriate. Instead,
normalization is performed at the probe level, ie. the in-
tensities of methylated and unmethylated probes are
normalized instead of their summarized level.

The probe-type bias is not sufficiently reduced by just
QN, and beta mixture quantile dilation (BMIQ)
normalization is needed [50]. The bias between probe
types 1 and 2 is optimally reduced given that type 1
probes are more likely to map to CpG islands than type
2 (the proportions of methylated and unmethylated
probes vary between the two types) and that the dens-
ity distributions of the two types should be matched,
especially at the methylated/unmethylated extremes.
The expectation maximization (EM) algorithm is used
in BMIQ normalization with three states in the beta
mixture model.

Adjusting for cellular heterogeneity

The Houseman software we used to adjust for cell type
is described in [37]. Cell distribution might differ by dis-
ease status, thus cell heterogeneity may act as a con-
founder when investigating DNA methylation differences.
Quantification of overall lymphocyte composition can
only be done using methods based on flow cytometry.
This requires large volumes of fresh blood and labor-
intensive antibody tagging. Given that the DNA methy-
lation signature is highly correlated with the leukocyte
distribution, the methylSpectrum method [37] performs a
deconvolution algorithm similar to quadratic program-
ming and regression calibration to investigate association
with a disease. Using external validation data, the model is
calibrated and the bias is corrected for.

The Houseman method performs a deconvolution of
DNA methylation array data into source contributions
from distinct cell types by determining the composition
of white blood cells from DNA methylation array data
assayed in whole blood. The approach depends on the
DNA methylation signature of each of the principal im-
mune components of whole blood that includes B cells,
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granulocytes, monocytes, NK cells, and T cells. The
methylation signature is considered a high-dimensional
multivariate surrogate for the distribution of white blood
cells, which can be used in predicting disease states. Be-
cause the DNA methylation signature is thought to be
highly correlated to the leukocyte distribution, this fits
into the framework of measurement error models where
using a noisy surrogate marker to test the association
with a disease results in biased estimates, unless valid-
ation data can be obtained to calibrate the model and
correct the bias.

Adjusting for potential confounders

Many differences between subjects can exist due to vary-
ing life styles, diet, or medication. When performing an
EWAS, the major sources of variation in the methylation
data must be captured and regressed out in association
analyses. Principal component analysis (PCA) is used to
capture the unmeasured sources of variation in methyla-
tion data using the MethylPCA tool [39]. The data is
first reduced in size by combining methylation data from
neighboring sites. The measured and computed covari-
ates (including age, gender, batch, and white blood cell
composition) were regressed out prior to PCA. The
computed PCs were considered additional covariates
that were supplied to the multiple linear regression
when testing for the association between phenotype and
each methylation site.

Statistical analysis

Association tests were performed to identify sites where
methylation varies with a given phenotype. The influence
of any phenotype on methylation was done by identifying
the differentiated genes based on the linear model “Im” in
R. There were a large number of covariates for each of the
association studies, including age, gender, BMI, batch, six
white blood cell coefficients, and ten PCs. To avoid over-
fitting by regressing out too many parameters in the dif-
ferent models, we tested each individual covariate against
the phenotype of interest and using the R “anova” com-
mand and determined whether the addition of a particular
covariate was significant. We only added covariates
that resulted in a better fit to the model with a p
value <0.05. The covariates that were to be incorpo-
rated into the different models were incrementally and
independently selected for each association study. For
the gender association study, the best linear model in-
cluded the CpG sites and age, BMI, only two of the white
blood cell coefficients (NK cells and B cells), and only
three of the PCs (PC7, PC6, and PC9) as covariates. For
the age association study, the best linear model included
the CpG sites and BMI, gender, only two white blood cell
coefficients (CD8'T cells and monocytes), and only five
PCs (PC4, PC3, PC2, PC10, and PC5) as covariates. For
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the smoking association study, the best linear model in-
cluded the CpG sites and the gender, BMI, age, only two
of the cell coefficients (monocytes and granulocytes), only
the first PC (PC1), and batch as covariates. We applied dif-
ferent models such as CpG ~ age + gender + BMI, CpG ~
age + gender + BMI + cell coefficients, and CpG ~ age +
gender + BMI + cell coefficients + PCs and monitored the
changes in inflation in the genome-wide association studies.
This produced a set of p values that can be represented as
Q-Q plots and Manhattan plots. This is followed by mul-
tiple testing adjustments, and mean levels of methylations
were compared across phenotype categories while adjusting
for the known and computed confounders in the form of
PCs. The IlluminaHumanMethylation450k.db annotation
package was used for the annotation of CpGs so that most
of the differentially methylated CpG sites were mapped to
some gene name.
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