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The sirtuins in the pathogenesis of cancer
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Abstract Aging is the natural trace that time leaves behind
on life during blossom and maturation, culminating in
senescence and death. This process is accompanied by a
decline in the healthy function of multiple organ systems,
leading to increased incidence and mortality from diseases
such as diabetes, cancer, cardiovascular disease, and neuro-
degeneration. Based on the fact that both sirtuin expression
and activity appear to be upregulated in some types of cancer
while they are being downregulated in others, there is quite
some controversy stirring up as to the role of sirtuins, acting
as cancer suppressors in some cases while under other
circumstances they may promote cellular malignancy. It is
therefore currently quite unclear as to what extent and under
which particular circumstances sirtuin activators and/or
inhibitors will find their place in the treatment of age-
related disease and cancer. In this review, we take an effort to
bring together the highlights of sirtuin research in order to
shed some light on the mechanistic impact that sirtuins have
on the pathogenesis of cellular malignancy.
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The sirtuin family of proteins

Seven human sirtuins (SIRT1–SIRT7) have been identified
so far. Based on phylogenetic analyses, they are further

grouped into four subclasses (Frye 1999, 2000; Voelter-
Mahlknecht et al. 2006b). The main characteristic feature
that distinguishes sirtuins from non-sirtuin HDACs is their
unique enzymatic mechanism. The sirtuins are NAD+-
dependent deacetylases and adenosine diphosphate (ADP)
ribosyltransferases. Most sirtuins catalyze NAD+-dependent
deacetylation (Imai et al. 2000; Landry et al. 2000; North et
al. 2003; Tanner et al. 2000). While SIRT4 possesses
NAD+-dependent mono-ADP-ribosyltransferase activity
(Haigis et al. 2006; Liszt et al. 2005), SIRT1 and SIRT6
have been reported to exert both ADP ribosyltransferase
and substrate-specific deacetylase activities (Michishita et
al. 2008). For SIRT4 and SIRT7, a deacetylase activity has
not been reported so far, but such activity may require a
specific substrate, as for SIRT6 (Landry et al. 2000; Tanner
et al. 2000). Sirtuin enzymatic activities have been linked to
a variety of cellular processes such as heterochromatin
silencing, differentiation, metabolism, neuronal protection,
apoptosis, and cell survival due to the sirtuin ability to
deacetylate both histone and numerous non-histone targets
(Michan and Sinclair 2007). Three mammalian sirtuins are
located within the mitochondria (SIRT3, SIRT4, and
SIRT5), while the other sirtuins exert their functions within
the cytosol (Sirt2), in the cell nucleus (Sirt1 and Sirt6), or
within the nucleoli (Sirt7) (Table 1). A number of signal
transduction pathways have been associated with the life-
span-extending capacity of calorie restriction (CR). In this
context, the sirtuins have been reported to play a key role,
which is mostly based on their requirement of NAD+ as a
co-factor for enzymatic activity, which in turn demonstrates
the crucial link between sirtuins and the energy-dependent
regulation of gene expression. In fact, studies in lower
organisms such as yeast, Drosophila melanogaster, or
Caenorhabditis elegans demonstrated that either the over-
expression or hyperactivity of yeast SIR2 and its orthologs
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is coupled with prolonged life span (Table 1, Fig. 1; Longo
and Kennedy 2006).

Sirtuin 1

SIRT1, the closest human homolog to yeast SIR2, is the
best characterized member within the family of sirtuins
with regard to life span and age-related disease. It has been
implicated to play a crucial role during the aging process
for several reasons (Guarente and Picard 2005; Mahlknecht
and Voelter-Mahlknecht 2009a; Saunders and Verdin 2007;
Voelter-Mahlknecht et al. 2006b; Westphal et al. 2007).
First, SIRT1 is downregulated in senescent cells (Sasaki et
al. 2006) and during aging (Sommer et al. 2006). Secondly,
calorie restriction induces SIRT1 expression in mammalian
cells and humans, thereby promoting cell survival and
proliferation, while it reduces cellular senescence (Cohen et
al. 2004), whereas SIRT1-knockout mice fail to display a
phenotype of CR (Chen et al. 2005). Consistent with this
observation, phenotypes of sirt1-overexpressing mice par-
tially display phenotypes of its calorie-restricted counter-
parts (Bordone et al. 2007). Also, an increase of SIRT1
activity and/or expression represses tumor suppressor and
DNA-repair genes, including FOXO1/2/4, WRN, Rb, p73,
MLH1, and NBS1 (Deng 2009; Vijg et al. 2008). In white
adipose tissue, SIRT1 promotes fatty-acid mobilization
through inhibition of peroxisome proliferation-activating
receptor gamma (PPARγ) and upregulation of the produc-
tion/secretion of adiponectin and FGF21 via FOXO1 and/or
PPARγ (Imai and Guarente 2010; Liu et al. 2008). In
addition, SIRT1 is involved in the upregulation of mito-
chondrial biogenesis due to its capability to deacetylate and
thus activate the PPARγ co-activator-1α (PGC-1α; Rodgers
et al. 2005; Zschoernig and Mahlknecht 2008), which

stimulates mitochondrial activity and subsequently
increases glucose metabolism, which in turn improves
insulin sensitivity (Engel and Mahlknecht 2008; Lagouge
et al. 2006). The maintenance of this delicate balance
between sensitivity and secretion of insulin in major
metabolic tissues (liver, skeletal muscle, white adipose tissue,
and pancreatic β-cells) is essentially regulated by Sirt1,
which regulates the production of glucose in the liver via
PGC-1α, FOXO1, CRTC2, and STAT3, which seems to
repress insulin sensitivity. On the other hand, SIRT1 increases
insulin sensitivity in the skeletal muscle by increasing fatty-
acid oxidation through PGC-1α and repression of PTB1B
(Imai and Guarente 2010; Liu et al. 2008; Nie et al. 2009;
Rodgers et al. 2005). The regulation of mitochondrial
biogenesis and metabolism is widely accepted as a key
component in the regulation of life span and aging (Lopez-
Lluch et al. 2008). Furthermore, SIRT1 has not only been
demonstrated to mimic calorie restriction but also to exert
neuroprotective effects. The resveratrol-mediated activation
promotes a SIRT1-induced resistance to axonal degeneration
(Araki et al. 2004), and increasing evidence that SIRT1
protects neurons from apoptosis (Brunet et al. 2004) and is
involved in the prevention of Alzheimer’s disease and
amyotrophic lateral sclerosis disease models (Kim et al.
2007) has emerged. Interestingly, the pharmacological
activation of SIRT1 recapitulates many of the observations
that have been made in the context of a knockout or
transgenic overexpression of SIRT1 in mice.

The most prominent activator of SIRT1 is resveratrol
(3,4,5-trihydroxystilbene). Analysis in no-mammalian
organisms revealed that treatment with resveratrol extends
life span through direct activation of SIRT1 (Howitz et al.
2003; Wood et al. 2004) by increasing its substrate binding
affinity (Borra et al. 2005). In addition, it retards cellular
senescence in human diploid fibroblasts (Huang et al.

HIC1 p53
Ac Ac

E2F1
Ac

SIRT1

FOXO3a
Ac

CtBP

Sirt1 promoter Sirt1

HuR

Chk2

Sirt1 mRNA 
stability

SIRT1

miR-34
miR-199

cMyc
Ac

Fig. 1 Transcriptional and post-transcriptional regulatory mechanisms
of SIRT1. Four transcription factors (HIC1, p53, E2F1, and cMYC)
have been identified to modulate SIRT1 expression under oxidative
stress/DNA-damage conditions and/or nutrient deprivation. Post-
transcriptional control of SIRT1: upon oxidative stress, SIRT1 mRNA

is degraded due to a checkpoint-kinase-2-mediated dissociation of the
RNA binding protein HuR. Via a feedback loop, SIRT1 regulates the
activity of promoter-bound transcription factors through deacetylation.
Green boxes: activating factors; red boxes: inactivating factors; green
arrow: activation/increase; red line: inactivation/inhibition
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2008). In a study by Baur and co-workers, resveratrol
treatment has been demonstrated to improve health and life
span in mice in the presence of a high-calorie diet (Baur et
al. 2006). Despite the fact that high-calorie-fed mice were
obese, the group receiving resveratrol lived significantly
longer and exhibited the characteristic molecular changes
that have been observed in conjunction with increased life
span including improved insulin sensitivity, reduced insulin-
like growth factor 1 levels, increased PGC-1α activity, and
an increased numbers of mitochondria. In addition to
resveratrol and a number of agents including quercetin,
fistein, butein, pyrroloquinoxaline, and oxazolopyridine that
have been described a while ago (Haigis and Sinclair 2010),
more recently, a number of highly specific SIRT1-activating
compounds (SRT1460, SRT1720, and SRT2183) have been
identified by a high-throughput fluorescence polarization
analyses followed by high-throughput mass spectrometry
(Milne et al. 2007). These activators are structurally
unrelated to resveratrol and exhibit nanomolar to low micro-
molar potency towards SIRT1 in vitro. Notably, compound
SRT1720 has not only been proven to be a useful activator of
SIRT1 in vitro but also in three different in vivo models
which displayed the characteristic changes of calorie
restriction. In diet-induced obese as well as in genetically
obese mice (Lepob/ob), treatment with SRT1720 significantly
improved insulin sensitivity, decreased plasma glucose
levels, and increased mitochondrial biogenesis. Consistent
with these results, glucose homeostasis and insulin sensitivity
in adipose tissue, skeletal muscle, and liver were markedly
improved in Zucker fa/fa rats, a genetically obese rodent
model. Taken together, SIRT1 activation by SRT1720
appears to mimic the effects of calorie restriction on
metabolic and mitochondrial function and therefore consti-
tutes a promising drug for the treatment of age-related
diseases such as type 2 diabetes. Similarly, specific inhibition
of SIRT1 activity by sirtinol, a cell-permeable 2-hydroxy-1-
napthaldehyde derivate, has been reported to induce
senescence-like growth arrest in human endothelial and
cancer cells and to increase histone H3 lysine 14 (H3K14)
and histone H4 lysine 16 (H4K16) as well as p53 acetylation
levels, accompanied by an attenuated DNA synthesis, an
increased SA-β-gal activity as well as senescence-like
morphological changes ( Ota et al. 2006, 2007), which
further supports the idea that SIRT1-activating compounds
could be an effective strategy in the treatment of aging or
age-related diseases (Figs. 1, 2, and 3).

Sirtuin 2

SIRT2 is primarily found in the cytoplasm and co-localizes
with microtubules, where it deacetylates tubulin (North et
al. 2003; North and Verdin 2007). SIRT2 controls mitotic

checkpoint functions during early metaphase in order to
prevent chromosomal instability and increases considerably
during mitosis. Both SIRT1 and SIRT2 deacetylate H3K56,
which is an acetylation marker that is typically increased in
several different types of cancer (Das et al. 2009; Inoue et
al. 2007b, 2009). During the G2/M transition of the cell
cycle, the SIRT2 protein is phosphorylated. p53 and histones
H3 and H4 are SIRT2 substrates, and SIRT2 is involved in the
regulation of the cell cycle (Heltweg et al. 2006; Inoue et al.
2007a), in adipocyte differentiation, and in the response to
oxidative stress (Jing et al. 2007; North et al. 2003; Voelter-
Mahlknecht et al. 2005; Wang et al. 2007). SIRT2 activation
in the context of cancer could therefore be as undesirable
and contradictory as the activation of SIRT1, since it
catalyzes the deacetylation of p53 and consequently the
inactivation of p53, which aggravates tumor growth, while
on the other hand SIRT2 has been suggested to release
mitotic arrest in critically damaged cells, allowing them to
proceed to apoptosis (Inoue et al. 2009; North et al. 2003;
North and Verdin 2007; Fig. 1). Also, SIRT2 is known to
deacetylate FOXO3a, which is a regulator of transcription.
The deacetylation of FOXO increases its DNA binding and
consequently the expression of FOXO target genes such as
p27Kip1, manganese superoxide dismutase, and BIM. SIRT2
therefore decreases the cellular levels of reactive oxygen
species. Also, since BIM is a proapoptotic factor, SIRT2
does in fact promote cell death when cells are under severe
stress (Wang et al. 2007). The expression of SIRT2 is
highest in healthy brain tissue but appears to be severely
reduced in a large number of brain tumor cell lines (Voelter-
Mahlknecht et al. 2005). Interestingly, the yeast SIRT2
ortholog Hst2 has been reported to work concurrently with
SIR2 in certain strains with regard to life span extension and
rDNA silencing (Lamming et al. 2005). Most recently, one
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Fig. 2 Modulation of SIRT1 activity through direct interaction with
activating/inactivating ligands. Green boxes: activating factors; red
boxes: inactivating factors; green arrow: activation/increase; red line:
inactivation/inhibition
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study on SIRT2 reported the therapeutic effectiveness of
AGK2, which exhibits a >14-fold selective inhibition of
SIRT2 relative to SIRT1 in the treatment of neurodegenerative
diseases such as Parkinson’s (Outeiro et al. 2007) through
formation of less toxic α-synclein aggregates (the exact
mechanism remains however to be further elucidated).
Another selective SIRT2 inhibitor is AC-93253, which is a
small molecule that is cytotoxic in at least four different
tumor cell lines (Zhang et al. 2009). Cambinol and salermide
are compounds that inhibits both SIRT1 and SIRT2.

The regulation and the effects of SIRT2 activity are
highly complex, and changes of SIRT2 activity may be
beneficial to the cell under specific circumstances while
they may be detrimental in others (Garske et al. 2007; Jing
et al. 2007). Decreased levels of SIRT2 have been reported
in gliomas and therefore an inhibition of SIRT2 may
predispose cells to uncontrolled growth, while increasing
activity of SIRT2 in certain cancers could be beneficial
(Hiratsuka et al. 2003). Accordingly, overexpression of
SIRT2 slows down or even arrests cell cycle progression
and increases the number of multinucleated cells. This may
happen in response to microtubule inhibitors such as
nocodazole (Inoue et al. 2007b; Inoue et al. 2009). The
activity of SIRT2 appears to depend on the phosphorylation
of SIRT2Ser368 by CDK1 (Dransfeld et al. 2010; Jin et al.
2009; North and Verdin 2007). Well-balanced levels of
SIRT2 are required for mitotic reliability, and therefore,
depending on the circumstances, while the inhibition of
SIRT2 may be useful in the treatment of some cancers, its
activation may be useful in other types of cancer.

Calorie restriction and its effects on aging
and age-related disease

Cellular senescence and organism aging are characterized
by the progressive loss of physiological functions and

metabolic processes which is often accompanied by age-
associated disease, such as diabetes, cancer, cardiovascular
disease, and neurodegeneration (Love 2005; Zschoernig
and Mahlknecht 2008). Since the discovery of the first
mammalian sirtuin, SIRT1, 10 years ago, major achieve-
ments in our understanding of the function and regulation
of sirtuins and their effects on mammalian physiology and
life span have been published. Based on the underlying
biological complexities, we still lack a complete picture of
the molecular mechanisms related to the aging process that
takes place in humans. A number of factors are associated
with the rate of aging such as variable genomic stability,
metabolic control, changes in gene expression patterns and
the production of reactive oxygen species (ROS; Gruber et
al. 2008; Oberdoerffer and Sinclair 2007). As mitochondria
constitute the major production site of ROS, this organelle
most likely plays a key role in life span and aging.
Interestingly, around 20% of mitochondrial proteins are
suggested to be posttranslationally modified by reversible
acetylation, especially those involved in life span and
metabolism (Fig. 2; Kim et al. 2006).

Healthy aging is one of the ideals of modern society. Both
the identification of the underlying molecular mechanisms
and interventions regarding the aging process are of
considerable interest. Up to now, CR, a phenomenon that
was first described in the 1930s by McCay and co-workers,
where an organism was provided with at least 20% less
calories below ad libitum level, constitutes the most robust
and reproducible way of extending health and longevity
(McCay et al. 1989). CR has not only been shown to
increase the median and maximum life span of a variety of
organisms (Masoro 2000; Masoro and Austad 1996;
Weindruch and Sohal 1997; Weindruch et al. 1986; Yu
1994), it is also associated with a decreased incidence or
delayed rate of age-related disease as demonstrated in
several rodent studies (Weindruch et al. 1986; Yu 1994).
Also, the beneficial effects of CR are related to lower

non-histone proteins
transcription factors …

specific

gene expression

SIRT1

Proliferation Senescence Apoptosis

histones
H1K26Ac H3K9Ac H4K16Ac

histone methylation
H3triMeK9 H3diMeK9

H3diMek79 H4monoMeK20

DNMT3B recruitment
to promoter regions
(CpG methylation)

methylation deacetylation

specific

gene expression ↓↓↓
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gene expression↓↓↓ ↓↓↓ ↓↓↓

Fig. 3 In the classical model,
SIRT1 inhibits tumor cell
apoptosis and senescence while
it increases cell proliferation
through modulation of methyla-
tion at the histone level and
promoter CpG islands as well as
the deacetylation of histone and
non-histone proteins
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circulating insulin levels and increased insulin sensitivity,
thereby reducing the predisposition to diabetes as well as
other metabolic disorders which is also associated with life
span extension based on experiments in animal models
(Katic and Kahn 2005; Lane et al. 1995). A different key
feature of CR is a lowered core body temperature that goes
along with reduced and more efficient energy expenditure
and thus increased life span (Lane et al. 1996; Roth et al.
1995). Regardless of the lack of long-term studies, there is
emerging evidence that CR may contribute to life span
extension in humans. Studies on dogs (Kealy et al. 2002),
cows (Pinney et al. 1972), and non-human primates
revealed that many of the physiological responses in these
organisms look a lot like those observed for CR on rodents
(Mattison et al. 2003; Roth et al. 2004). Most notably, the
National Institute of Aging initiated short-term human CR
studies (6–12 months) at the Washington University, Tufts
University, and the Pennington Center at Louisiana State
which already confirm, albeit on a preliminary basis,
reduced plasma insulin levels and body temperature that
are key features of the CR response repeatedly observed in
animal studies (Hadley et al. 2005; Heilbronn and Ravussin
2003). In consideration of the already demonstrated
positive effect on human health (Roth 2005; Roth et al.
2005), these data are the first evidence that humans might
indeed benefit from CR not only due to disease protection
but also in terms of increased survival.

The sirtuin connection to cancer

Even though calorie restriction appears to be the most
effective way to prevent cancer in rodents and primates,
which some view as an indication that sirtuins are tumor
suppressors (Sinclair 2005), some sirtuins, such as SIRT1
and SIRT3, appear to improve cell survival, which could be
a sign that they may in fact promote tumorigenesis (Brooks
and Gu 2008, 2009). Cancer rates directly correlate with
increasing age. Most cancers arise from genetic or epigenetic
damage in renewable tissues, resulting in vigorous cell
proliferation and survival on the basis of impaired apoptosis.
While organ degeneration is accompanied by a loss of
function, cancer goes along with a gain of aberrant function
(Mahlknecht and Hoelzer 2000a; Mahlknecht et al. 2000b;
Mei et al. 2004).

The level of SIRT1 is highly elevated in a number of
cancer cell types. SIRT1 binds and deacetylates the
androgen receptor and represses dihydrotestosterone-
induced androgen receptor signaling in human prostate
cancer (Fu et al. 2006). On the other hand, SIRT1 silencing
induces growth arrest and apoptosis in human epithelial
cancer cells (Ford et al. 2005). The ectopic induction of
SIRT1 in beta-catenin-driven mouse model of colon cancer

significantly reduces tumor formation, proliferation, and
animal morbidity (Firestein et al. 2008). Conversely, SIRT1
may also stimulate TNF-α-induced apoptosis, which
indicates that SIRT1 may not only suppress apoptosis but
also promote apoptosis (Yeung et al. 2004).

In addition to the deacetylation of histones, SIRT1 also
deacetylates non-histone proteins such as various transcrip-
tion factors that are involved in growth regulation, the
response to stress, and apoptosis in the fundamental progres-
sion of cancer. The inhibition of SIRT1 goes along with an
increase of H4K16, H3K9, and H1K26 acetylation at endoge-
nous promoters and suffices to induce gene re-expression in
cancer cells as shown for breast and colon cancer (Pruitt et
al. 2006). SIRT1 also regulates the formation of heterochro-
matin via deacetylation of histone H1K26 and promotes the
loss of H3K79me2, a marker associated with transcriptionally
active chromatin. These are a few examples of how SIRT1
was speculated to be associated with the modulation of
epigenetic hallmarks of cancer.

Despite of all its beneficial effects, SIRT1 activation may
for some instances also be detrimental: the SIRT1-catalyzed
deacetylation of the tumor suppressor protein p53 (Luo et
al. 2001; Vaziri et al. 2001) goes along with the inactivation
of p53, which allows cells to bypass p53-mediated apoptosis
(Fig. 1). This is good for normal cells since it increases their
survival and prolongs life span. In tumor cells, however, this
effect is not at all desirable since it aggravates tumor growth.
On the other hand, a number of tumor suppressor proteins
including p53, HIC1, and DBC1 have been identified to
negatively regulate SIRT1: HIC1 (hypermethylated in
cancer 1) is a zinc-finger protein that is regulated by p53,
which in turn binds to the SIRT1 promoter and thus
represses the transcription of Sirt1 (102). Accordingly, the
inactivation of HIC1 upregulates the transcription of SIRT1,
thereby inactivating p53, which allows cells to bypass
apoptosis after DNA damage. Interestingly, HIC1 appears
to undergo hypermethylation at the promoter level as a
consequence of aging, which in turn may at least in part
explain the increasing susceptibility to cancer with increasing
age. CtBP is a co-repressor that binds to HIC1 and the
binding of CtBP to HIC1 is particularly strong during
glycolysis. Therefore, if glycolysis is inhibited, the binding
of the co-repressor CtBP to HIC1 is decreased, which in turn
enhances SIRT1 expression (Fig. 1; Zhang et al. 2007).
DBC1 (deleted in breast cancer) is another tumor sup-
pressor that negatively regulates SIRT1 deacetylase activity
(Anantharaman and Aravind 2008; Kim et al. 2008; Zhao et
al. 2008). DBC1 knockdown by siRNA promotes the
deacetylation of p53, which in turn allows cells to survive
genotoxic stress, which is an effect that is mediated by
SIRT1. DBC1 may therefore promote the development of
breast cancer through activation of SIRT1, which then
downregulates p53 and/or other tumor suppressor pathways.
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cMYC is a proto-oncogene that regulates cell proliferation,
stem cell self-renewal, and apoptosis. cMYC binds to the
SIRT1 promoter and induces SIRT1 expression, but through
a feedback loop that could in fact avoid cellular transfor-
mation, SIRT1 deacetylates cMYC, which decreases cMYC
stability and thus results in tumor suppression (Yuan et al.
2009; Zschoernig and Mahlknecht 2008, 2009; Fig. 1).

In fact, the expression of SIRT1 appears to be upregu-
lated for most types of cancer such as in human prostate
cancer (Huffman et al. 2007), acute myeloid leukemia
(Bradbury et al. 2005), non-melanoma skin cancers (Hida et
al. 2007; Lim 2006), primary colon cancer (Stunkel et al.
2007), and breast cancer (Haigis and Sinclair 2010). This
and the capacity of SIRT1 to inactivate a number of
proteins that are associated with tumor suppression and the
repair of DNA damage explains why SIRT1 has been
largely considered a tumor promoter (Ashraf et al. 2006;
Fraga and Esteller 2007; Jung-Hynes et al. 2009; Lim 2006;
Stunkel et al. 2007). The SIRT1-mediated silencing of E-
cadherin through hypermethylation of a CpG island at the
promoter level is such an example of how SIRT1 may
contribute to carcinogenesis in epithelial cancers (O'Hagan
et al. 2008; Pruitt et al. 2006). Also, the reactivation of p53
through inhibition of SIRT1, instead of stimulating it, could
trigger tumor cell apoptosis. Whether elevated levels of
SIRT1 are the cause or consequence of tumorigenesis is
currently not clear. On the contrary, more recently, several
studies have demonstrated SIRT1 levels to be reduced in
some other types of cancers such as glioblastoma, cancers
of the bladder, the prostate, the female breast, and ovary,
and liver cancer when compared to the corresponding
normal tissues (Wang et al. 2008a) and that SIRT1
deficiency may in fact result in genetic instability and
tumorigenesis, while overexpression of SIRT1 attenuates
cancer formation in mice that are heterozygous for tumor
suppressor p53 or APC (Deng 2009), which on the other
hand may be an indicator that SIRT1 could be a tumor
suppressor rather than a promoter of cancer in these tissues.
Also, recent publications have reported SIRT1 to be
essential in the repair of DNA strand breaks and thus to
prevent the development of cellular malignancy in mouse
cancer models, and in fact, mice that carried additional
copies of SIRT1 did not reveal any signs of premature death
or increased cancers of any sort. In murine cancer models
of leukemia and colon cancer, SIRT1 transgenic mice were
reported to live longer (Deng 2009; Firestein et al. 2008;
O'Hagan et al. 2008; Oberdoerffer et al. 2008). The
question of whether SIRT1 acts primarily as an oncogene
or as a tumor suppressor is still unanswered and remains
still to be determined. It is however strongly evident that
SIRT1 is a critical regulator in the pathogenesis of cancer.

Another example showing a direct beneficial effect of
SIRT1 in cancer relates to its activity on the regulation of

breast cancer cell apoptosis. In healthy cells, breast-cancer-
associated gene 1 (BRCA1), which is a potent tumor
suppressor gene, maintains the expression of SIRT1, which
in turn, inhibits the expression of survivin, a protein that
inhibits apoptosis. If BRCA1 is defective through a
spontaneous or inherited mutation, this defective BRCA1
is no longer able to keep up sufficient levels of SIRT1, and
consequently, the expression of survivin may no longer be
sufficiently inhibited, which results in a resistance to
apoptosis and thus continuous tumor cell growth (Wang et
al. 2008b). At least in vitro and in animal models, the
compound resveratrol, which is known to enhance SIRT1
activity, was able to strongly inhibit tumor growth in
BRCA1-defective cells as a consequence of reduced survivin
expression and subsequent apoptosis of BRCA1-deficient
cancer cells (Wang et al. 2008b).

In addition to its activity as a deacetylase, SIRT1 is
known to localize to the promoters of quite a few aberrantly
silenced tumor suppressor genes whose DNA is hyper-
methylated (Jones and Baylin 2002). This is particularly
essential if a DNA break is initiated within a CpG island
because SIRT1 then appears to be required for the transient
recruitment of DNA methyltransferase 3B and the subse-
quent silencing of this DNA region by methylation
(O'Hagan et al. 2008; Oberdoerffer et al. 2008; Wang et
al. 2008a; Yuan and Seto 2007). The localization of SIRT1
to DNA breaks and is essential for efficient DNA-break
repair (Oberdoerffer et al. 2008; Wang et al. 2008a): cells
and mice that lack SIRT1 are more prone to DNA-damage-
induced aneuploidy, and the efficiency of DNA-break
repair and the maintenance of genome stability is impaired
by 50% (Oberdoerffer et al. 2008). Cells that lack SIRT1
are not able to effectively recruit DNA-repair factors
subsequent to DNA damage (Fig. 3; Deng 2009).

The other sirtuins, SIRT3–SIRT7, and their relation
to cancer

Sirtuin 3

For SIRT3–SIRT7, only a few hints indicate that these
enzymes may be important in the pathogenesis of cancer.
SIRT3 may be proapoptotic in HCT116 cells through
JNK2. This pathway is independent from SIRT1 (Allison
and Milner 2007). In other situations, however, such as in
response to DNA damage when NAD+ levels in mitochon-
dria are low, SIRT3 and SIRT4 can in fact be antiapoptotic
(Yang et al. 2007). SIRT3 is the first sirtuin that was
reported to be localized to the mitochondrial matrix of
mammalian cells and represents the major mitochondrial
deacetylase (Lombard et al. 2007; Michishita et al. 2005;
Schwer et al. 2006; Voelter-Mahlknecht and Mahlknecht
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2003). Despite the controversy that has arisen on the
possibility that SIRT3 might also be present in the nucleus,
it should be emphasized that, whatsoever, the bulk of
SIRT3, both mouse and human, is localized in the
mitochondrion (Hallows et al. 2008). SIRT3 appears to be
the only sirtuin that is linked genetically to life span in
humans (Rose et al. 2003): in human population studies,
analyses of SIRT3-related polymorphisms suggested a
SIRT3 G477T transversion, which does in fact not affect
the amino acid sequence, to be associated with increased
survival in elderly males (Bellizzi et al. 2005; Rose et al.
2003). Similarly, a loss of enhancer activity due to a
variable number of tandem repeats within sirt3 intron 5 was
correlated with increased survival rates in males beyond the
age of 90 years (Bellizzi et al. 2005). Even though these
findings need to be further validated in larger population
cohorts, they further strengthen the rationale that the
expression of SIRT3 may promote longevity in humans.

Surprisingly, when deleted in the mouse, Sirt3 does not
exhibit any signs of disorder as long as the animals are
without stress (Lombard et al. 2007). Several lines of
evidence suggest that SIRT3 is important in regulating the
response to stress, and thus, there is a close connection
between SIRT3 and the regulation of cellular energy
metabolism, the regulation of fatty-acid oxidation during
fasting, and cellular aging: SIRT3 is abundantly expressed
in brown adipose tissue and its expression is further
increased during fasting (Hirschey et al. 2010; Shi et al.
2005). In addition, two independent studies showed that the
mitochondrial form of acetyl CoA synthetase 2 (ACS2) is a
direct SIRT3 target, which is activated upon deacetylation
(Hallows et al. 2006; Schwer et al. 2006). ACS2 is the
nuclear source of acetyl CoA for histone acetylation, an
intermediate of the citric acid cycle, and is required for
cholesterol and fatty-acid synthesis. SIRT3 is therefore a
key player that regulates the entry of carbons from acetate
into central metabolic pathways.

SIRT3 plays an important role in the pathogenesis of
cancer: SIRT3 activates the expression of MnSOD and
catalase by promoting the translocation of cytosolic
FOXO3a to the nucleus (Saunders and Verdin 2007).
FOXO3a affects the expression of the antioxidant MnSOD,
which degrades mitochondrial superoxide into H2O2, which
appears to regulate cellular transformation. Therefore, a loss
or aging-associated decrease in the expression of SIRT3
leads to increased FOXO3a phosphorylation, triggering its
nuclear export and thus promoting oncogenic transforma-
tion by enhancing mitochondrial ROS, which may induce
genetic instability and the stabilization of hypoxia-inducible
factor (Kim et al. 2010; Lanza et al. 2008). Thus, SIRT3
functions as a tumor suppressor, and the nuclear/cytosolic
functions of SIRT3, rather than the mitochondrial, mediate
its role in the regulation of antioxidant activity and cellular

transformation, and it may therefore be worth to consider
whether NAD administration could drive the cells in a
reverse direction along the transformation pathway in
tumors where SIRT3 is either being lost or decreased.
Since increased levels of SIRT3 mRNA have been
associated with breast cancer and thyroid cancer, it is
currently not clear as to what extent Sirt3 acts as a tumor
suppressor rather than a tumor promoter (Ashraf et al.
2006; Frye 2002).

Sirtuin 4

SIRT4 is another mitochondrial protein that exerts strong
ADP ribosyltransferase activity but lacks almost any
deacetylase activity (Haigis et al. 2006; Mahlknecht and
Voelter-Mahlknecht 2009b; Michishita et al. 2005). A
number of key regulators of the cellular metabolism have
been identified to be regulated by SIRT4: the activity of
glutamate dehydrogenase (GDH), a mitochondrial enzyme
which is involved in the conversion of glutamate to α-
ketoglutarate, is repressed by SIRT4-mediated ADP ribosyla-
tion which represents an important mechanism in the
regulation of amino-acid-stimulated insulin secretion (Haigis
et al. 2006). Also, SIRT4-knockout mice have been reported
to be viable; pancreatic islets isolated from these mice did
however secrete higher levels of insulin, which is consistent
with the role of SIRT4 as a downregulator of insulin
secretion through the repression of GDH activity (Haigis et
al. 2006). A loss of SIRT4 function could therefore
contribute to the development of diabetes due to higher
levels of insulin that are known to increase the predisposition
to both diabetes and other metabolic disorders (Katic and
Kahn 2005). The identification of both insulin-degrading
enzymes and adenine nucleotide transporters to be substrates
of SIRT4 further supports the thought that SIRT4 plays a
direct role in the maintenance of physiological levels of
insulin in response to glucose (Ahuja et al. 2007).

Sirtuin 5

SIRT5 is a mitochondrial sirtuin that that exerts only weak
deacetylase activity and which has only been barely studied
so far (Michishita et al. 2005; Schuetz et al. 2007). Lately,
two mitochondrial substrates have been identified: cyto-
chrome c, a key regulator of oxidative metabolism and
apoptosis initiation (Schlicker et al. 2008) and the carbamoyl
phosphatase synthetase 1 (CPS1), which catalyzes the first
step of the urea cycle and which is being activated by SIRT5
mediation (Nakagawa et al. 2009). During CR, increased
CPS1 activity has been correlated with hypo-acetylation,
and a 50% increase in mitochondrial NAD+ points out the
role of SIRT5 in the upregulation of the urea cycle for
ammonia disposal. In a recent study that assessed the
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mRNA expression of sirtuins in pancreatic cancer, only
Sirt5 was consistently upregulated (Mahlknecht et al. 2006a;
Ouaissi et al. 2008).

Sirtuin 6

SIRT6 is a nuclear protein that carries weak deacetylase and
strong ADP ribosyltransferase activity (Liszt et al. 2005;
Mahlknecht et al. 2006b). Studies on SIRT6-deficient
knockout mice suggested SIRT6 to fundamentally influence
the aging process since these mice displayed genomic
instability and premature aging symptoms, dying several
weeks after birth (Mostoslavsky et al. 2006). Such
observations are ascribed to deficiency in a specific DNA-
repair mechanism base excision repair (BER). Accordingly,
SIRT6−/− MEFs show impaired proliferation and enhanced
sensitivity to DNA-damaging agents, resulting in multiple
chromosomal alterations (fragmentation, detached chromo-
somes, gaps, and translocations) on the basis of a BER
defect (Mostoslavsky et al. 2006). Consistent with these
results, the proper regulation of genomic stability is widely
accepted to protect against tumor formation and premature
aging (Lombard et al. 2005). SIRT6, which is an important
key player in the maintenance of genomic stability,
specifically interacts with GCIP, which is a potential tumor
suppressor that is downregulated in colon, breast, and
prostate cancers (Ma et al. 2007; Michishita et al. 2008;
Mostoslavsky et al. 2006).

Sirtuin 7

The protein SIRT7 localizes to the nucleolus of human cells
(Ford et al. 2006; Michishita et al. 2005; Voelter-
Mahlknecht et al. 2006a). So far, neither a deacetylase nor
an ADP ribosyltransferase activity has been detected for
SIRT7. Nevertheless, it appears that SIRT7 is also involved
in life span extension. SIRT7 knockdown induces apoptosis
in human cells, indicating that SIRT7 is required for cell
survival (Ford et al. 2006). This observation is based on the
observation that SIRT7 is a positive regulator of RNA
polymerase I transcription and therefore ribosome biogenesis.
In addition, life span was reduced in SIRT7-deficient mice,
which had also enhanced inflammatory cardiomyopathy
compared to wild-type mice. In such mice, a reduction of
SIRT7 levels was accompanied by increased p53 activity,
subsequently resulting in enhanced cardiomyocyte apoptosis
(Vakhrusheva et al. 2008; Voelter-Mahlknecht et al. 2006a).

Conclusions and perspectives

Quite some confusion has been stirring up as to the role of
the sirtuins acting primarily as suppressors for some types

of cancers, while they seem to promote cancer under other
circumstances. It is therefore currently unclear as to what
extent and under which particular circumstances sirtuin
activators and/or inhibitors will find their place in the
treatment of age-related disease and cancer. While SIRT1
expression and activity are repressed under non-malignant
conditions through tumor suppressors, SIRT1 expression
and activity may be increased once oncogenes are over-
expressed or if the activity of tumor suppressor proteins is
reduced, which may finally block senescence and apoptosis,
while on the other hand it may induce angiogenesis and
stimulate cell growth and go along with resistance to
chemotherapy. Future investigations regarding the concerted
interplay of the different sirtuins will therefore not only
contribute to a more detailed understanding of the aging
process but might also lead to the development of novel
strategies in the treatment of cancer and other age-related
diseases.
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