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Abstract Epigenetic treatment concepts have long been
ascribed as being tumour-selective. Over the last decade, it
has become evident that epigenetic mechanisms are
essential for a wide range of intracellular functions in
healthy cells as well. Evaluation of possible side-effects and
their underlying mechanisms in healthy human cells is
necessary in order to improve not only patient safety, but
also to support future drug development. Since epigenetic
regulation directly interacts with genomic and chromosom-
al packaging density, increasing genomic instability may be
a result subsequent to drug-induced epigenetic modifica-
tions. This review highlights past and current research
efforts on the influence of epigenetic modification on
genomic stability in healthy human cells.
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Introduction

While referring to the genome as the ‘book of life’, it is the
epigenome that forms the annotations, footnotes, and tags
necessary to store as well as interpret the raw text. DNA
methylation and/or posttranslational histone-modifications
build the backbone of the epigenetic code.
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Methylation is carried out by a family of DNA
methyltransferases (DNMTs) and may be targeted to CpG-
rich regions at the genomic DNA level (‘CpG-islands’). If
hypermethylation is taking place within the promoter
regions of specific genes, this may consequently be
associated with transcriptional silencing (Issa 2004). Addi-
tionally, tRNA aspartic acid methyltransferase 1 (TRDMT]1,
formerly known as DNMT2) was shown to methylate with
high specificity RNA but not DNA (Goll et al. 2006).

Currently, three DNMT/TRDMT-inhibiting substances
are in the focus of clinical trials: 5-azacytidine (5-azaC), 5-
aza-2'-deoxycytidine (5-aza-dC) and 5-Fluoro-2'-deoxycy-
tidine, while a fourth substance, zebularine, already showed
high toxicity in preclinical studies excluding it from further
clinical trials (Issa and Kantarjian 2009). In addition, in
2006, a phase II clinical trial with MG98, a specific
antisense oligodeoxynucleotide inhibitor on mRNA for
human DNMT1, was stopped due to an lack of significant
response (Winquist et al. 2006). Although an updated
treatment scheme based on a recently published phase I trial
may show better outcome in future trials (Plummer et al.
2009).

While the nucleoside analogue 5-azaC is primarily
incorporated into RNA and only a fraction of 5-azaC is
secondarily incorporated into DNA, S5-aza-dC directly
incorporates into DNA. Incorporation of nucleoside
analogues leads to sequestration of DNMTs via covalent
bond formation resulting in the inhibition of DNMTs
(Stresemann et al. 2006). 5-azaC could recently shown to
be also capable of inhibiting TDRMT]1 as well (Schaefer
et al. 2009). Two drugs have already achieved approval by
the FDA: 5-azaC (Vidaza®) in 2004 for treatment of all
subtypes of MDS with a recent extension of indications
and in 2006 5-aza-dC (Decitabine®), also for the treatment
of MDS.
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Despite the steadily increasing interest in epigenetic
treatment concepts, only little is known about the influence
of drug-induced epigenetic modifications in healthy cells.
The attention of this review is therefore drawn away from
epigenetic treatment effects on malignant cells towards
genomic stability in healthy human cells.

Hypomethylating agents

Despite the fact that little is known about the consequences
of intracellular hypomethylation in the fight against cancer,
scientists and clinicians have been testing maximum-
tolerable doses (up to 750 mg/m” per application in adults)
for the cytosine analogues 5-azaC and 5-aza-dC over many
years (Sorm et al. 1964). The use of both agents was
limited due to severe cytotoxicity (Haaf 1995). The idea of
resetting a deranged epigenetic code is based on the strong
hypomethylating qualities of the mentioned cytosine ana-
logues which occur at significantly lower doses, rather than
on the cytotoxic potential of these agents (today, 5-azaC is
usually applied at a dose of 75 mg/m?). Bone-marrow
depression is the most common side-effect in association
with hypomethylating agents, while classical cytotoxic
side-effects, such as hair loss, mucositis, diarrhoea, and
renal failure are rare (Issa and Kantarjian 2009). Neverthe-
less, although administrated doses have been minimized,
three mechanisms with the potential to damage genomic
integrity are currently discussed: (1) chromosomal fragility
due to DNA hypomethylation, (2) covalent binding of the
large DNMT to DNA forming a ‘mechanical barrier’ and
(3) decrease in DNA repair capacity (Jackson-Grusby et al.
1997; Kiziltepe et al. 2007; Morales-Ramirez et al. 2008).

Chromosomal breaks occur more frequently
within undercondensed chromatin regions

Chromosomes or chromosome fragments which are not
incorporated into daughter nuclei during mitosis can be
excluded from the cell nucleus, thus forming ‘micronuclei’
within the cytoplasm. The scoring of micronuclei is still a
popular method in the determination of chromosomal
instability (Geigl et al. 2008). In the 1970s and 1980s the
formation of “pulverized” (Schmid et al. 1984) and over-
segmented chromosomes (Viegas-Péquignot and Dutrillaux
1976) subsequent to high doses of 5-azaC (> 10™* M) was
reported, while low doses inhibited the formation of
constitutive heterochromatin in human lymphocytes (effects
can be even found at very low doses of 5x107° M, (Haaf
1995)). Epigenetics was still in its infancy when in 1994 the
formation of micronuclei was reported after incubation with
5-azaC in human lymphocyte cultures as an expression of
chromosomal instability (Guttenbach and Schmid 1994).
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Most interestingly, chromosomes 1, 9, 15, 16 and Y have
been reported to be undercondensed and thus particularly
sensitive to 5-azaC-treatment (at a dose of > 5x1077 M),
which subsequently results in DNA strand breakage and thus
in the exclusion of micronuclei (Guttenbach and Schmid
1994; Satoh et al. 2004), although later participation of
chromosome 15 couldn’t be confirmed (Fauth et al. 1998).
Additionally, analysis of 5-azaC-induced undercondensation
in the pericentromeric region of human fibroblast chromo-
somes gave no evidence of whole-chromosome aneuploidy,
but of chromosomal aberrations including the classical DNA
satellite regions (Cimini et al. 1996). In contrast to these
findings, Kiziltepe et al. using 5-azaC at similar doses did
not find any significant cytotoxicity against normal donor
PBMCs and BMSCs, but against multiple myeloma (MM)
cells (Kiziltepe et al. 2007)

HDAC inhibitors

Another fundamental regulation of gene expression takes
place at the nucleosome level: Acetylation and deacetyla-
tion of N-terminal histone tails allows for the posttransla-
tional modification of gene activity. The acetylation of
specific lysine residues is mediated by the enzymatic
activity of histone-acetyl-transferases (HATs; following an
approach for a new nomenclature they may be better called
K-acetyltransferases KATs, see Allis et al. (2007)) and is
associated with the formation of transcriptionally active
euchromatin. Conversely, the removal of such acetyl groups
from specific lysine amino acid residues and substitution by
positively charged amino groups at the N-terminal histone
tails results in transcriptional gene silencing (see Table 1 for
an overview over known histone deacetylases (HDACs)). A
steadily increasing number of naturally occurring or
synthetically produced HDAC inhibitors with heteroge-
neous chemical structures allow—at least in vitro—the
reactivation of genes, which may include both, dormant
tumour-suppressor genes and potentially also oncogenes
(Mahlknecht and Hoelzer 2000; Mei et al. 2004; Purrucker
et al. 2010; Villar-Garea and Esteller 2004). Until today,
SAHA (suberoylanilide hydroxamic acid, Vorinostat,
Zolinza®) is the only HDAC inhibitor that has been
approved by the FDA. For further information on HDAC
inhibitors mentioned in this review, please refer to Table 2.

Radiosensitization of healthy human cells

Numerous in vitro studies have been published on a potential
HDAC-inhibitor-mediated tumour-radiosensitization. How-
ever, only few and quite controversial data are available on
radiosensitization effects in normal human cells. At sites
of radiation-induced DNA double-strand breaks (DSBs)
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Table 1 Classification of human histone deacetylases

Class Human HDAC Yeast HDAC Co-factor Compartment Tissue distribution
I HDACGCs 1, 2, 3 RPD3 Zn Mostly nuclear Ubiquitous
and 8
Ila HDACs 4, 5, 7 HDAI1 Zn Nuclear and cytoplasmic Heart: HDAC4, 5, 7
and 9 smooth muscle: HDAC4, 5, 7, 9 brain:
HDACA4, 5, 9 placenta, pancreas: HDAC 7
b HDACs 6 and 10 HDAL1 Zn Cytoplasmic Kidney, liver: HDAC 6, 10 pancreas,
heart: HDAC 6 spleen: HDAC10
i SIRT 1-7 SIR2 NAD+ Nuclear (1,6,7), mitochondrial See (Dali-Youcef et al. 2007)
(3,4,5), cytoplasmic (2) for a comprehensive overview
v HDAC 11 Zn Nuclear and cytoplasmic Heart, smooth muscle, kidney, brain

immediate phosphorylation of the histone variant H2AX
takes place, forming distinct foci, which can be visualized
e.g. through immunofluorescence techniques such as the
YH2AX-focus analysis (Sedelnikova et al. 2002). The loss
of ionizing radiation-induced YH2AX foci correlates with
clonogenic survival (MacPhail et al. 2003). DSBs are
repaired following two major pathways: Homologous

recombination utilizes a complementary template provided
by the sister chromatid during DNA replication, whereas
non homologous end-joining does not restore the original
sequence and is not bound to a specific phase of the cell
cycle making it the major pathway of DSB repair in
mammalian cells (Lieber 2008; Pandita and Richardson
2009).

Table 2 Overview over histone deacetylase inhibitors and their properties cited in this review

HDAC- Full name Synonyms/brand Chemical Substrate Clinical trials Number of clinical trials® (A
inhibitor names class =active, NA=not active)
AN-1 Butyroyloxymethyl Short-chain ~ N/A - -
butyrate fatty acid
AN-9 Pivaloylomethyl Pivanex® Short-chain ~ N/A Phase I, II n=3 (NA 3)
butyrate fatty acid (CLL, MM, NSCLC)
NaB Sodium-butyrate Short-chain ~ Class I, — -
fatty acid Ila
PB Phenylbutyrate Short-chain  Class I,  Phase I, II (AML, MDS, n=9 (NA 9)
fatty acid Ila NSCLC, colorectal cancer)
VA Valproic acid Depakote®, Short-chain ~ Class I~ Phase I, II (hematologic n=45" (A 23, NA 22)
Convulex®, Orfiril®, fatty acid neoplasias, solid tumours)
Stavzor®
AAHA  Azelaic-1- Hydroxamate N/A - -
hydroxamate-9-anilide
ABHA  Azelaic Hydroxamate N/A - -
bishydroxamic acid
CBHA  m-Carboxycinnamic Hydroxamate N/A - -
acid bis-hydroxamide
PCI- Hydroxamate Class I, Phase I, II (hematologic n=5 (A 2, NA 3)
24781 b neoplasias, sarcoma)
SAHA  Suberoylanilide Vorinostat®, Zolinza® Hydroxamate Class I, Phase I, II, IIT (hematologic n=159 (A 78, NA 81)
hydroxamic acid la, b neoplasias, solid tumours)
SBHA  Suberic Hydroxamate N/A - -
bishydroxamate
TSA Trichostatine A Hydroxamate Class I, - -
ITa, b
MS275 SNDX-275, Etinostat Benzamide  Class I, Phase I, II (hematologic n=9 (A 3, NA 6)
Ila neoplasias/solid tumours)

Some data obtained from (Eot-Houllier et al. 2009; Rasheed et al. 2007; Witt et al. 2009)

Abbreviations: AML acute myeloid leukaemia, CLL chronic lymphocytic leukaemia, MM malignant melanoma, NSCLC non-small cell lung

cancer, MDS myelodysplastic syndrome

# As listed on http:/clinicaltrials.gov

b Only studies in which drug was used alone or in combination for treatment of neoplasias were included
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Both, increased induction of DSBs as well as delayed or
inhibited repair increases the risk of genomic rearrange-
ments. Incubation with HDAC inhibitors prolongs the
expression of YH2AX foci significantly in a great number
of tumour cell lines and reduces their clonogenic survival,
suggesting a decrease in DNA repair capacity (Camphausen
and Tofilon 2007). Using the method of premature-
chromosome-condensation, Stoilov et al. recognized that
incubation with NaB (sodium-butyrate) inhibits the repair
of chromosome breaks in Gy human lymphocytes, while it
has no effect on the initial level of radiation-induced DNA
damage (Stoilov et al. 2000), which would have been a sign
of direct HDAC-inhibitor-induced genomic instability.
Munshi et al. (Munshi et al. 2005) found NaB-induced
radiosensitization in two melanoma cell lines without
changes in DNA repair capacity in healthy human lung
fibroblasts.

In order to assess the anti-proliferative activities of the
HDAC inhibitors AN-1 (butyroyloxymethyl butyrate) and
AN-9 (pivaloylomethyl butyrate) against glioma cell lines,
Entin-Meer et al. (Entin-Meer et al. 2005) also performed
tests on human primary astrocytes and found a strong cell-
line-specific and dose-dependent increase in apoptosis in all
glioma cell lines (apoptosis rates: 50—>90%), but not in
primary astrocytes, where apoptosis rates were only around
20%. In order to determine potential radiosensitization
effects, cell lines were treated with AN-1 and AN-9 prior to
irradiation with doses of 3, 6 or 10 Gy. After irradiation,
apoptosis rates were determined by flow cytometry.
Unfortunately, a direct comparison between cell lines is
complicated due to differences in the administration of
radiation as well as drug doses. While combination-
treatment schemes (AN-1/9 plus irradiation) led to in-
creased apoptosis in all tumour cell lines when compared
with irradiation alone, there was no similar increase in
mortality in primary astrocytes.

In 2007, Banuelos et al. (Banuelos et al. 2007) reported
the radiosensitization of cervical and colon carcinoma cells
subsequent to exposure to the HDAC inhibitor PCI-24781,
a hydroxamate which is undergoing first clinical trials.
Survival was determined using a clonogenic survival assay,
with cells exposed to drug 20 h prior until 4 h post-
irradiation. Similarly, in this study radiosensitization of
human skin fibroblasts was also assessed, however human
skin fibroblast survival was assessed subsequent to irradi-
ation with a single dose of 3 Gy, while carcinoma cell lines
were irradiated with 2, 4, 6 and a maximum of 8 Gy,
respectively. The authors' documentation of only a minimal
radiosensitization in human noncycling fibroblasts upon
treatment with PCI-24781 therefore is not very convincing
and requires further evaluation.

In recently published experiments, we examined the
possible effects of HDAC inhibition on DNA repair in
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human skin fibroblasts. For this purpose, we exposed cells
in vitro to the HDAC inhibitors SAHA, MS275, NaB and
VA before radiation with 0.5 Gy. Survival was determined
using a clonogenic survival assay. By first using the
YH2AX-focus analysis, we found a significant decrease in
DSB-repair capacity for SAHA, MS275 and NaB, with up
to 3.3 times higher persisting foci rates after 24 h.
Consequently, clonogenic survival was reduced as well
(Purrucker et al. 2010) (for results on VA please refer to
‘the special case of VA’ below).

Effects on proliferation and cell viability

As reported, HDAC inhibitors carry effects on both,
genomic stability as well as on the regulation of gene
expression. Since both processes may result in decreased
proliferation and impaired cell viability, it is worth to take a
closer look on the following publications. In 1997, an
Australian research group began to investigate potential
anti-proliferative effects of the HDAC-inhibitor azeleic
bishydroxamic acid (ABHA). Cell growth in neonatal
foreskin melanocytes and fibroblasts (NFF) was not
decreased, but proliferation of human cervical (HeLa) and
ovarian tumour cell lines as well as human melanoma
(MM418cl, MM96 L, Mel-SV) and transformed keratino-
cytes (HaCat) was reduced (Parsons et al. 1997).

Later, the same research group published somewhat
controversial data by reporting a G,/M growth arrest of
NFF when treated for 24 h with ABHA (Qiu et al. 2000),
but this may be explained by the use of tenfold higher doses
of ABHA in this study.

In general, HDAC inhibitors may block proliferation by
up-regulating the expression of the cdk (cyclin dependent
kinase) inhibitor p21™V*1“P which leads to a G, phase
arrest (Mahlknecht and Hoelzer 2000). Tumour cells
frequently lack proper checkpoint function, which leads to
aberrant mitosis, transmission of mutated genes, fractured
chromatin and eventually cell death. Accordingly an
observed increase in cell death in MM96L and HeLa cells
upon treatment with ABHA may be explained by cells
attempting to undergo mitosis in an inappropriate state,
resulting in the non-congression of condensed chromo-
somes and missegregation during cytokinesis (Qiu et al.
2000). Qiu et al. demonstrated NFF cells to own a
functional ABHA-sensitive G, checkpoint which allows
cells to switch into G,/M arrest. The authors did however
not comment on whether the growth arrest was reversible or
irreversible after drug removal, an important factor of
possible toxicity in rapidly proliferating normal cells in
vivo. Furthermore, results seemed to be drug specific for
ABHA, since Qiu et al. had reported earlier a significant
killing of MMO96L and HeLa cells after treatment with
ABHA and AAHA (azeleic-1-hydroxamate-9-anilide), with
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AAHA going along with an increased proliferation of
fibroblasts (Qiu et al. 1999). However, the hydroxamate
trichostatin A (TSA) caused more killing in fibroblast
cultures than in MM229 and HeLa tumour cells (Qiu et al.
1999). This result is most remarkable in so far as it is one of
the rare reports on stronger toxicity in normal human cells
when compared with transformed cells.

Again in 1999, the same Australian institute published
effects of NaB and TSA on growth and differentiation of
human keratinocytes (HKCs) and squamous carcinoma
cells (SCC25 and SCC15) (Saunders et al. 1999). Prolifer-
ation was measured by [?H]-thymidine incorporation. Both
NaB and TSA were reported to induce growth arrest, which
was irreversible in the case of TSA, where a significant
proportion of keratinocytes did not resume DNA synthesis.
Consistent with this, mRNA-levels of cdkl were reduced.
Even though proliferation was strongly inhibited, both
HDAC-inhibitors were not substantially cytotoxic, since
cell viability remained high (ECso NaB; of 0.5 mM; ECsg
TSA: 120 nM). Interestingly, the authors report similar
effects on cell viability in squamous carcinoma cell lines,
with the exception that mRNA expression of the differen-
tiation specific gene TG1 (transglutaminase type I) was
induced in HKC cells, while it was decreased in squamous
carcinoma cell lines. Additional in vitro and in vivo studies
will be needed to determine whether the therapeutic index
in this context will be sufficient or not. Currently, there is
no clear evidence of a direct effect of HDAC inhibition on
genomic stability as the cause of the observed growth
inhibition. However, it needs to be considered particularly
in view of the fact that the observed time frame was only
48 h and cells were not specifically exposed to DNA
damaging agents, such as ionizing radiation as one of the
most frequent sources of iatrogenic DNA damage (Brenner
and Hall 2007; Heilig et al. 2010).

In 2001, Brinkmann et al. compared growth inhibition of
normal keratinocytes (nHKCs) and dermal fibroblasts
(HDFs) to transformed keratinocytes (SCC25) by exposing
cells to various HDAC inhibitors (suberic bishydroxamate
SBHA, NaB, phenylbutyrate and its enantiomeric forms
R-PB/S-PB and AAHA (Brinkmann et al. 2001). Hexam-
ethylane bisacetamide (HMBA), which is not an HDAC-
inhibitor, but belongs to the same chemical group of hybrid
polar compounds together with SAHA and CBHA, was
also tested in this study (Brinkmann et al. 2001; Richon et
al. 1998; Xu et al. 2005). The authors reported a growth
inhibition in normal and transformed keratinocytes, but not
in normal dermal fibroblasts, although direct comparison
seems to be difficult, since ICs, values were only reported
for nHKC vs. SCC25 cells, and not HDFs. Growth
inhibition was reported to be drug specific, as SBHA
showed higher ICsy levels for nHKC than for SCC25,
although with a high standard error of the estimate. In

contrast, inhibition of DNA synthesis was compared in
nHKC vs. HDFs, and again, results seemed to be drug and
not substance-class specific: Interestingly, HDAC inhibitors
NaB, R-PB, AAHA and SBHA increased DNA synthesis in
HDFs and decreased synthesis in nHKCs, while in the case
of HMBA it is the other way round. Apoptosis was not
detected in nHKCs or SCC25 cells, making it difficult to
contribute observed growth inhibition directly to an
increase in genomic instability.

Additionally, accumulation of hyperacetylated histones
per se is not sufficient to cause growth inhibition
(Brinkmann et al. 2001), endorsing the hypothesis that
growth inhibition due to HDAC inhibitors is a complex
process based upon direct modified gene expression and
contributing effects of chromosomal or genomic instability.

Combined treatment concepts

As well as sensitizing the human genome to radiation, HDAC
inhibitors could be thought of as drugs capable to untighten
the chromatin DNA in order to make it more accessible for
classic chemotherapeutic agents, like DNA cross-linkers or
alkylating agents. Again, studies comparing cytotoxic effects
on both malignant and normal cells are rare.

No increased genomic susceptibility to common anti-
cancer drugs was found for normal breast (MCF-12) and
intestinal epithelial cells (FHs 74 int) (Kim et al. 2003). Cell
exposure to cisplatin, a DNA cross-linker, cyclophosphamide
(alkylating agent), VP-16 (etoposide, a topoisomerase II
inhibitor) or 5-FU, which is an antimetabolite, subsequent to
pre-treatment with SAHA did not significantly change killing
efficiency when compared to treatment in reverse order (killing
by SAHA alone was not specifically measured in this study).
In glioblastoma as well as breast cancer cell lines, a
sensitization to the cytostatic agents VP-16, ellipticine (DNA
intercalator), doxorubicin (DNA groove binder and intercala-
tor) and cisplatin was observed as a consequence of pre-
treatment with SAHA or TSA. These findings suggest
additional cytotoxicity in cancer cells, which may be caused
by increased genomic fragility subsequent to pre-treatment
with HDAC inhibitors. Possible contributing effects caused by
different and/or modified cell cycle regulation in tumour vs.
normal cells have not been investigated. Also, conclusions
should be drawn with caution, since exposure in the
clonogenic survival assay was quite short for slower prolifer-
ating normal cells with only 4 h for SAHA or TSA and
removal 1 h prior to exposure to the anticancer drugs, which
was then followed by two more weeks in drug-free medium.

Prevention of corneal scar formation

An exposure to NaB or TSA for up to 3 days, was
associated with the inhibition of myofibroblastic differen-
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tiation of corneal stromal cells, repressed cell proliferation
and migration of corneal fibroblasts, and the induction of
cellular senescence of corneal myofibroblasts as recently
published by Zhou et al. (Zhou et al. 2008). As the authors
conclude, HDAC inhibition may therefore be a possible
mechanism in the prevention of corneal scar formation. On
the other hand, this study also underlines the wide-range
and poorly understood influence of HDAC inhibition on
normal cells.

Drug-induced toxicity in primary hepatocytes

A number of studies have been carried out to investigate
possible effects of HDAC inhibitors on hepatocytes and
hepatoma cells, because of the liver's central function in
drug metabolism. Knowledge about drug-induced toxicity
in primary hepatocytes by HDAC inhibitors is crucial in
view of their clinical use and the development of new
HDAC inhibitors. Available studies have been comprehen-
sively reviewed by Papeleu et al., concluding disturbed
tissue homeostasis by anti-apoptotic effects in primary
hepatocytes due to treatment with TSA and underlining the
need for future investigation of HDAC inhibitors toxico-
logical profile in a large number of different cell types
(Papeleu et al. 2005).

Reactive oxygen species

Reactive oxygen species (ROS) are an important source of
endogenous DNA damage. When naturally occurring
protection mechanisms, such as enzymatic and non-
enzymatic ROS scavengers are compromised, damage
accumulates, which then leads to apoptosis. While this is
quite a desirable effect in the fight against cancer, damage
caused by ROS in healthy human cells is generally feared
due to its carcinogenic potential. Studies reporting an
accumulation of ROS because of treatment with HDAC
inhibitors have been performed almost exclusively on
transformed cells (reviewed in (Eot-Houllier et al. 2009)).
An international research group investigated HDAC inhib-
itor mediated effects in both transformed as well as normal
lung fibroblasts and identified an accumulation of ROS in
transformed cells treated with SAHA, but not in normal
fibroblasts (WI38). Consistent with these results, apoptosis
was only induced in malignant, but not in normal cells,
while growth arrest occurred in both normal and trans-
formed cells (Ungerstedt et al. 2005).

The special case of valproic acid

The capacity of valproic acid (VA) to inhibit transamination
of the neurotransmitter GABA and to block voltage-gated
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sodium-channels and T-type calcium channels make it one
of the most common drugs in the treatment of epilepsy and
psychiatric disorders. Despite VA's more than 30-year-long
history of clinical use, a number of effects is still cryptic
and poorly investigated.

Anticonvulsant and antimigraineous effects persist for at
least several days after discontinuation of VA, raising the
question of possible changes at the genomic level (Lockard
and Levy 1976; Rho and Sankar 1999; Rosenberg 2007,
Rothrock and Mendizabal 2000). The direct comparison of
gene expression levels in blood from VA vs. carbamazepine
or drug-free patients revealed no less than a total of 461
genes that were either upregulated or downregulated in
response to VA treatment (Tang et al. 2004).

Currently, two major principles are discussed in this
context: (1) enhancement of the transcription factor AP-1
(activator protein 1) by VA and subsequent modification of
gene expression (reviewed in (Rosenberg 2007)), and (2)
VA mediated epigenetic modification: In 2001, the inde-
pendent discovery of the HDAC-inhibiting potential of VA
by Géttlicher et al. (Gottlicher et al. 2001) and Phiel et al.
(Phiel et al. 2001) was a milestone in the attempt to find
new explanations for the behaviour of VA.

In addition, a weaker HDAC-inhibiting effect was
described for constitutional isomers and metabolites of VA
(Eyal et al. 2005). Also, it was demonstrated in vitro that
carbamazepine and its metabolite carbamazepine-10,11-
epoxide as well as the common antiepileptic agents
topiramate and the main metabolite of levetiracetam exert
HDAC-inhibiting activities (Beutler et al. 2005; Eyal et al.
2004). While carbamazepine was initially reported to lack
an HDAC inhibitory activity (Eyal et al. 2004), contra-
dicting results were soon published after this report,
demonstrating the hyperacetylation of histone proteins in
response to exposure to carbamazepine despite its poor
solubility (Beutler et al. 2005).

Histone H3 and to a lesser extent histone H4 hyper-
acetylation was shown in vivo in isolated PBMCs from
patients with bipolar disorders and/or schizophrenia who
had received 4 weeks of treatment with VA (Sharma et al.
2006). Persisting effects after discontinuation of the drug
(Lockard and Levy 1976; Rho and Sankar 1999; Rothrock
and Mendizabal 2000) may indeed be ascribed to persistent
hyperacetylation, but since affected cells carry the potential
to restore ‘original’ acetylation pattern rapidly after drug
removal, effects attributed to HDAC inhibition are in fact
expected to disappear after a maximum of a few days.

In view of the relatively long clinical use of VA when
compared with other HDAC inhibitors—its toxicological
profile is of special interest (Bokelmann and Mahlknecht
2008). The most common side-effects comprise weight gain,
dyspepsia and hepatic disturbances. Nausea, vomiting, indi-
gestion are also frequently observed as well as sedation,
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Fig. 1 Epigenetic treatment: the
super-selective therapy approach
or wide collateral damages.
While there is a steadily grow-

epigenetic treatment

ing knowledge of the epigenetic
influence on malignant cells,
little is still known about
drug-induced epigenetic modifi-
cations on healthy human cells.
a Selective influence on tumour
cells (blue). b Surrounding
tissue maybe affected as well
(green). ¢ Wide effects on both
tumour and healthy tissue (red).
(Schematic; modified CT scans
based on Osirix® DICOM
image samples)

fatigue and blood dyscrasia, which may occur due to VAs
influence on HDAC activity, gene expression and genomic
stability of rapidly proliferating cells (Qiao et al. 2006;
Rosenberg 2007). The teratogenic side-effects of VA, which
are known since long, have also been attributed to the
inhibition of HDACs (Gbttlicher et al. 2001; Phiel et al.
2001; Rosenberg 2007), the exact underlying epigenetic
mechanism remains however to be further elucidated (Ornoy
2009).

Long-term safety of VA

The controversial data on genomic instability due to
treatment with HDAC inhibitors raise the question of
long-term safety of VA. General genomic instability
anticipates an increase in the rate of malignant trans-
formations, but fortunately, until today no increase in the
frequency of solid or haematological neoplasias has been
reported in association with the administration of VA.

To date, the anti-carcinogenic or chemopreventive
effects that have been ascribed to the anti-proliferative and
differentiating effects of HDAC inhibition have not been
demonstrated in humans in vivo (Hallas et al. 2009; Singh
et al. 2005). If on the other hand VA is able to inhibit DSB
repair to a certain degree not only in tumour cells, as
demonstrated (Camphausen et al. 2005; Chinnaiyan et al.
2008; Harikrishnan et al. 2008), but in normal cells as well
(Purrucker et al. 2010), one should expect noticeable side-

effects in patients who are being exposed to therapeutic
irradiation. We recently did not find a significant decrease
of DSB repair subsequent to exposure of VA in cultured
human fibroblasts. Nevertheless, our observation of an
increase in radiosensitivity resulting in decreased clono-
genic survival underlines the biological importance of a
possible slight decrease in DSB repair in human normal
cells (Purrucker et al. 2010).

At present, retrospective data are only available from an
abstract published at the 50th ASTRO annual meeting in 2008
indicating a favourable outcome in patients with high-grade
glioma who underwent VA therapy during radiotherapy,
without suffering additional severe side-effects (Barker et al.
2008). Also an active clinical trial is currently being
conducted (NCI-06-C-0112), which combines radiotherapy
with HDAC inhibition. Patients with glioblastoma multi-
forme are treated with VA and/or the classic cytotoxic agent
temozolomide in addition to a fractionated radiotherapy of
up to 60 Gy (Camphausen and Tofilon 2007). Since this is
the first prospective study which combines radiotherapy with
HDAC inhibition, results are expected with special interest.

Despite mentioned risks in long-term-therapy concepts,
VA could assist to improve outcome in less-toxic therapy
regimes, especially in elderly patients. In patients with
MDS or de novo/secondary acute myeloid leukaemia not
eligible for intensive chemotherapy, VA in addition to all-
trans-retinoic acid was well tolerated and resulted in an
overall response rate of 27% (Bellos and Mahlknecht 2008).
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Clinical relevance

We are witnessing steadily growing fields of studies
demonstrating anticancer effects of epigenetic modifying
drugs while at the same time reports on effects in non-
deranged normal cells are single blades of grass. This
might be simply caused by the fact that experiments with
slow proliferating primary human cells generally seem to
be by far more time-consuming and complicated. In
addition, a strong publication bias, excluding studies
with ‘negative’ (or less significant) results may also
contribute to this. The effects of drug-induced epigenetic
modifications furthermore seem to be far more heteroge-
neous and complex than it was initially expected (Fig. 1).
Global hypomethylation which leads to undercondensa-
tion of chromosomes is shown to be responsible for
chromosomal breakage and could lead to transformation
of normal cells (Cimini et al. 1996; Guttenbach and
Schmid 1994; Satoh et al. 2004; Schmid et al. 1984;
Viegas-Péquignot and Dutrillaux 1976). HDAC inhibitors
may not only introduce reversible or irreversible growth
arrest in healthy human cells (Qiu et al. 2000; Saunders et
al. 1999), but may also be responsible for apoptosis in
certain constellations (Qiu et al. 1999; Zhou et al. 2008).

Radiosensitization is not limited to diseased cells, but
also occur in healthy tissue cells (Purrucker et al. 2010;
Stoilov et al. 2000). In the case of VA, new (prospective)
studies will have to clarify uncertainties of its long-term
safety and provide a full toxicity profile, contributing to a
more exact epigenetic image of VAs behaviour especially
in the central nervous system.

Future generations of HDAC inhibitors will have to be
HDAC specific, allowing a more targeted influence on
cell functions. Until then, in the absence of comprehen-
sive toxicological long-term data, physicians should be
aware of possible side-effects of epigenetic modifica-
tions. Patients will have to be informed and educated
explicitly on potential carcinogenic side effects, as it is
already common procedure in the administration of
classic cytotoxic chemotherapy. Given the enormous
potential of epigenetics, scientists and clinicians should
work as close together as possible to provide the best
outcome for patients—in view of effective therapies as
well as best possible risk reduction.
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