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Genome‑ and epigenome‑wide association 
studies identify susceptibility of CpG sites 
and regions for metabolic syndrome in a Korean 
population
Ho‑Sun Lee1,2*, Boram Kim2 and Taesung Park1,3 

Abstract 

Background  While multiple studies have investigated the relationship between metabolic syndrome (MetS) 
and its related traits (fasting glucose, triglyceride, HDL cholesterol, blood pressure, waist circumference) and DNA 
methylation, our understanding of the epigenetic mechanisms in MetS remains limited. Therefore, we performed 
an epigenome-wide meta-analysis of blood DNA methylation to identify differentially methylated probes (DMPs) 
and differentially methylated regions (DMRs) associated with MetS and its components using two independent 
cohorts comprising a total of 2,334 participants. We also investigated the specific genetic effects on DNA methylation, 
identified methylation quantitative trait loci (meQTLs) through genome-wide association studies and further utilized 
Mendelian randomization (MR) to assess how these meQTLs subsequently influence MetS status.

Results  We identified 40 DMPs and 27 DMRs that are significantly associated with MetS. In addition, we identified 
many novel DMPs and DMRs underlying inflammatory and steroid hormonal processes. The most significant associa‑
tions were observed in 3 DMPs (cg19693031, cg26974062, cg02988288) and a DMR (chr1:145440444–145441553) 
at the TXNIP, which are involved in lipid metabolism. These CpG sites were identified as coregulators of DNA methyla‑
tion in MetS, TG and FAG levels. We identified a total of 144 cis-meQTLs, out of which only 13 were found to be associ‑
ated with DMPs for MetS. Among these, we confirmed the identified causal mediators of genetic effects at CpG sites 
cg01881899 at ABCG1 and cg00021659 at the TANK genes for MetS.

Conclusions  This study observed whether specific CpGs and methylated regions act independently or are 
influenced by genetic effects for MetS and its components in the Korean population. These associations 
between the identified DNA methylation and MetS, along with its individual components, may serve as promising 
targets for the development of preventive interventions for MetS.
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Background
Metabolic syndrome (MetS) is considered a repre-
sentative example of complex traits, as it is defined by 
a combination of traits, including central obesity, insu-
lin resistance, dyslipidemia, and hypertension. There-
fore, it is important to identify the causal interplay 
between MetS and its associated risk factors. Previ-
ous epigenome-wide association studies (EWAS) have 
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emphasized the epigenetic role of lipid metabolism as 
a major contributor to the pathogenesis of MetS and 
its phenotypic outcomes. [1, 2] Both obesity [3, 4] and 
hypertension [5], as components of MetS, have also 
been reported to be regulated by epigenetic mecha-
nisms. Recently, various EWAS conducted among 
European, African American, and East Asian popula-
tions have identified certain CpG sites near TXNIP, 
ABCG1, SREBF1, IGF2BP1 and GFPT2 that are asso-
ciated with MetS [6–8]. While numerous studies have 
revealed methylation sites linked to MetS, the causal 
relationship between these epigenetic modifications 
and the onset of the disease remains an area requiring 
more extensive investigation. These considerations are 
encountered in the context of identifying causality with 
other phenotypes [9] or combined effects of multiple 
target sites [10]. Moreover, despite numerous EWAS on 
MetS, identifying causal effects in MetS remains chal-
lenging compared to other metabolic disorders, such as 
type 2 diabetes (T2D) and cardiovascular diseases.

Research interest in genetic impacts on DNA meth-
ylation variation is especially relevant in the context of 
methylome changes observed in diseases [11]. Genetic 
variation represents an additional contributor to DNA 
methylation in tissues, with genetic influences estimated 
to account for approximately 20–80% of DNA meth-
ylation variance within a given tissue [12]. Most of the 
genetic associations identified for MetS are related to 
individual components, exhibiting varying degrees of 
pleiotropy [13]. Multiple studies have successfully identi-
fied genetic variants associated with methylation quanti-
tative trait loci (meQTLs), which appear to overlap with 
expression quantitative trait loci, thereby influencing 
phenotypes [14]. This implies that both DNA methyla-
tion and gene expression may exist along the intercon-
nected pathway linking genetic variation and disease. 
Therefore, several studies have attempted to evaluate 
whether a causal relationship exists between DNA meth-
ylation measured in peripheral blood and various meta-
bolic diseases [10, 14]. However, the current evidence of 
a mediated effect between meQTLs and related traits for 
MetS is still being uncovered.

To accumulate knowledge of the pathological mecha-
nisms behind the condition at the methylation level, we 
performed a meta-analysis of EWAS using whole blood 
DNA methylation data generated by the EPIC microar-
ray. This study included 2334 Korean individuals (1520 
cases and 814 controls) from 2 independent cohorts to 
identify differentially methylated probes (DMPs) and 
differentially methylated regions (DMRs) associated 
with MetS and its components. Additionally, we per-
formed Mendelian randomization (MR) analysis with 
cis-meQTLs to investigate whether the observed DNA 

methylation changes linked to genetic variation are caus-
ally linked to MetS.

Methods
Study participants
This study used data from the Korean Genome and Epi-
demiology Study (KoGES) Consortium, which includes 
multiple independent prospective cohorts that differ 
according to the residential areas of the participants. 
These cohorts include the Health Examinees (HEXA) 
study and the Korea Association Resource (KARE) study. 
The discovery study (KARE) used data from 1528 par-
ticipants, which were obtained from the fifth 2-year fol-
low-up phase of the KARE cohort in 2011–2012. For the 
replication stage (HEXA), the data from 822 participants 
from the HEXA cohort in 2004 (baseline) were used. 
Detailed information about the KARE and HEXA cohorts 
has previously been described [15]. Additional file  3: 
Table S1 provides a summary of the studies and relevant 
details used in the analysis. This study was conducted 
with bioresources from the National Biobank of Korea, 
the Korea Disease Control and Prevention Agency, 
Republic of Korea (KBN-2020-108). Approval for the 
study was obtained from the Institutional Review Board 
of Seoul National University (IRB No. E2209/001-001).

Metabolic syndrome
MetS was defined according to the modified criteria 
of the National Cholesterol Education Program-Adult 
Treatment Panel III (NCEP-ATP III) with the appropri-
ate waist circumference (WC) cutoff point for central 
obesity in Koreans [13]. MetS was diagnosed if individu-
als exhibited at least three of the following components: 
(1) WC ≥ 90 cm for men and ≥ 85 cm for women, (2) tri-
glyceride (TG) level 150 mg/dL or pharmacologic treat-
ment, (3) high-density lipoprotein (HDL) cholesterol 
level 40 mg/dL in men and 50 mg/dL in women or phar-
macologic treatment, (4) systolic/diastolic pressure (SBP/
DBP) ≥ 130/85  mmHg or antihypertensive drug treat-
ment, and (5) fasting glucose (FAG) level ≥ 100 mg/dL or 
pharmacologic treatment.

Epigenome‑wide association study and meta‑analysis 
for MetS
The KARE and HEXA studies utilized the Infinium Meth-
ylationEPIC BeadChip platform (850 K). The workflow of 
this study is shown in Additional file 1: Fig. S1. At base-
line, methylation data were available for 865,918 CpGs 
in 1528 KARE samples and for 865,918 CpGs in 822 
HEXA samples. Quality control of methylation data was 
conducted using the R package ChAMP [16] based on 
the following exclusion criteria: (1) probes with a detec-
tion p value above 0.01, (2) probes with fewer than three 
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beads in at least 5% of samples per probe, (3) all non-CpG 
probes, (4) all SNP-related probes, (5) all multihit probes, 
(6) all probes located in chromosomes X and Y, and (7) 
samples without phenotype information. Based on these 
criteria, 724,619 CpG sites in 1,526 KARE samples (651 
cases, 875 controls) and 732,046 CpG sites in 808 HEXA 
samples (163 cases, 645 controls) were included in the 
study.

For quality control, BMIQ [17] was used for normali-
zation, and batch effects were corrected using a ComBat 
method [18] in the ChAMP package. Cell type composi-
tions (CD8 T lymphocytes, CD4 T lymphocytes, natural 
killer cells, B lymphocytes, neutrophils and monocytes) 
were estimated using GLINT [19] with the ReFACTor 
algorithm [20].

We first identified CpGs for MetS and individual MetS 
components using Model 1 with a basic set of covari-
ates (age, sex, residential area and estimated cell type 
compositions) using the KARE and HEXA datasets. 
Model 2 further adjusted for smoking status in addition 
to those covariates in Model 1. Model 3 included addi-
tional adjustment for body mass index (BMI) in Model 2. 
Furthermore, we performed stepwise regression analysis 
using the Akaike information criterion (AIC) to select the 
main covariates influencing DNA methylation changes in 
MetS (Additional file 3: Table S2).

To investigate the distribution of p values of test statis-
tics, we used quantile–quantile (QQ) plots of observed 
and expected distributions of p values for each cohort. 
For more accurate statistical assessment, we estimated 
genomic inflation factors for each cohort and meta-anal-
ysis, using both the conventional approach and the bacon 
method [21], applied for a Bayesian method based on an 
empirical null distribution.

To improve statistical power through meta-analysis 
across different datasets at the individual CpG, we used 
bacon-adjusted cohort-specific results and conducted 
the inverse-variance weighted random-effects model, 
which was implemented in the ‘metagen’ function in the 
meta package (version 4.18.0). This approach allowed us 
to obtain a combined estimate of the effect size for DMP 
(differentially methylated probes) associated with a strin-
gent threshold using Bonferroni correction (p < 7 × 10−8).

Differentially methylated regions (DMRs) can offer 
greater insight into biologically relevant DNA meth-
ylation changes [22]. Associations between diseases and 
DNA methylation are frequently observed in clusters of 
CpG sites located within specific DMRs. This observa-
tion aligns with the function of DNA methylation, as it 
can either enhance or inhibit the binding of transcription 
factors, thereby influencing gene expression [23]. There-
fore, we performed a DMR analysis to investigate the 
joint effect of DNA methylation in whole blood on MetS 

and its components. For region-based meta-analysis, we 
used the comb-p [24] approach for detecting and testing 
DMRs enriched by multiple CpGs exhibiting the same 
direction of effects. The selected regions were defined 
based on the following criteria: a minimum of three CpGs 
within a region, a seed p value of less than 0.001, and a 
bin size of 310. To correct for multiple comparisons, we 
used a 5% Sidak corrected p value for significance [24]. 
The identified DMPs and DMRs were annotated using 
the Illumina UCSC (hg19 RefSeq gene annotation) and 
GREAT (Genomic Regions Enrichment of Annotations 
Tool) [25]. We also investigated regulatory regions for 
15 different types of chromatin states, such as enhanc-
ers, using ChromHmm annotation to produce a univer-
sal chromatin state annotation of the human genome 
from the Roadmap Epigenomics and ENCODE projects 
[26]. Since our DNA methylation data were generated in 
whole blood samples, we chose peripheral blood mono-
nuclear cells (PBMCs) as the reference epigenome E062 
[27].

Gene set enrichment analysis
We performed an enrichment analysis separately for 
DMPs and DMRs to facilitate the biological interpreta-
tion of methylation data obtained from the results of 
the meta-analysis. We identified the promoter region 
[within ± 2 kb around the transcription start sites (TSS)] 
based on the genes associated with specific regions and 
CpG sites. We performed functional annotations for the 
alterations observed in significant DMPs and DMRs via 
gene set enrichment analysis using the GREAT algo-
rithm [25]. This analysis employs a hypergeometric test 
on MSigDB using Hallmark and Gene Ontology (GO) 
gene sets, with a significance threshold of an adjusted p 
value < 0.05.

Genome‑wide association study for MetS
The KARE and HEXA cohorts were genotyped with 
Affymetrix Genome-Wide Human SNP Array 5.0 and 
6.0, respectively. The genotype data were available for 
352,228 SNPs in 8840 KARE samples and 627,659 SNPs 
in 3693 HEXA samples. We used PLINK version 1.9 
[28] for quality control with the following exclusion cri-
teria: (1) SNPs on chromosomes X, Y, and mitochon-
dria, (2) SNPs with a missing call rate greater than 5%, 
(3) SNPs with minor allele frequency below 5%, (4) 
SNPs with a Hardy‒Weinberg equilibrium p value of 
1 × 10−6, and (5) samples without phenotype informa-
tion. For subsequent analysis, reference genome anno-
tation was converted from NCBI build 36 to GRCh37 
matching methylation data using the LiftOver tool. 
[29] A total of 305,544 SNPs for 5888 KARE samples 
and 538,413 SNPs for 3668 HEXA samples remained 
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after quality control. We performed logistic regression 
analysis for binary traits of MetS and linear regression 
analysis for continuous traits for MetS components. We 
corrected for multiple comparisons using a Bonferroni 
correction in the meta-analysis.

Mendelian randomization test for meQTLs as causal CpGs 
to MetS
We conducted meQTL analysis in the KARE dataset. 
After LD pruning, we identified DNA methylation sites 
that may be influenced by SNPs using both genotyping 
and methylation data. To determine meQTLs, linear 
regression analysis was performed using the R package 
matrix eQTL [30] with age, sex, residential area, smoke, 
and cell type compositions as covariates. We tested for 
cis-meQTLs, defined as SNP and CpG sites located 
within 1 Mb of each other. Among the SNP-CpG pairs, 
the lead SNP for each CpG was defined as the pair with 
the smallest p value. To test the significant differences 
between two groups, t tests or chi-square tests were 
used.

To evaluate whether CpGs (exposure) might have 
a causal effect on MetS and individual components 
(outcome), we conducted MR using CpGs having ≥ 3 
independent FDR-corrected meQTLs as instrumental 
variables (IV) (Additional file  3: Table  S3). The associa-
tion results of meQTL and GWAS were used for two-
sample MR analysis to estimate the causal effects of DNA 
methylation on MetS because this analysis, except MR‒
Egger, has demonstrated its reliability in the context of 
large biobanks, even in cases of complete sample over-
lap [31]. In our study, we used inverse-variance weighted 
(IVW) and weighted median (WM) to investigate pos-
sible causal effects of DNA methylation. The R package 
MendelianRandomization [32] was used for this analysis. 
The heterogeneity p value was obtained from Q-statistics.

Results
Characteristics of participants
The baseline characteristics of the study participants 
are presented in Additional file  3: Table  S4. We finally 
included 814 participants with MetS and 1520 controls. 
The cohorts in our study consisted of population-based 
participants recruited independently from diseases and 
health status. The mean age ranged from 40 to 78 years 
across disease statuses, and the proportion of men 
ranged from 53.1 to 64.8% for MetS cases and controls, 
respectively. We observed higher mean age, BMI and 
MetS component levels in MetS cases than in controls. 
There were significant differences in age, sex, BMI, and 
smoking status between MetS cases and controls.

EWAS identified significantly methylated CpGs for MetS 
and its components
The results of each cohort for the main models are plot-
ted in Additional file 2: Fig. S2 (7 outcomes). There were 
some inflations in the models. The amount of inflation 
estimated using the lambda (λ) inflation factor varied 
substantially across analyses, ranging from 0.98 to 1.66. 
After removing inflation and bias, the � values ranged 
from 0.98 to 1.14.

After correcting inflation for each cohort, we first 
annotated the less conservative CpGs (FDR < 0.05, Fig. 1) 
in the meta-analysis to examine the potential functional 
effect of DNA methylation on MetS by associating these 
CpGs with predetermined genomic features and regions. 
We observed a global genome-wide hypomethylation in 
MetS and its components (Fig. 1A). No significant CpGs 
were found in the DBP, and only two CpGs were found 
to be significant in SBP, all of which were hypomethyl-
ated. The genomic regions and features of DMPs are 
shown in Fig.  1B. The majority of the significant DMPs 
were located in gene body and open sea in MetS and all 
its components. In specific for MetS, there were different 
patterns of genomic regions and features between hyper 
and hypo DMPs. We found hyper DMPs were enriched 
in 3’UTR with shelf and shore, and ExonBand with shore 
(Fig. 1C, left). On the other hands, the majority of hypo 
DMPs were located in open sea and intergenic region 
(Fig. 1C, right).

In the meta-analysis, we identified 40 bacon-corrected 
significant MetS-associated CpGs, of which 36 genes 
remained significant following Bonferroni correction for 
MetS (Table 1, Additional file 3: Table S5, Fig. 2). Among 
the 40 significant CpG sites related to MetS status, 30 
(75%) were hypomethylated, while 10 (25%) were hyper-
methylated. Eight CpGs were located in CpG islands or 
the shore, while the remaining CpGs were located in the 
open sea. Only one of these 40 CpGs was located in the 
promoter of gene mapped to RASSF9 and was hypo-
methylated. Interestingly, of the 40 CpG sites, 4 CpGs 
(cg10474793, cg08822075, cg01881899, and cg16734637) 
corresponded to enhancer regions and were mapped to 
the gene bodies of MYLIP, NFE2L3, ABCG1 and FOXP1, 
respectively. The DMP gene MYLIP is associated with 
ligase activity, which regulates cholesterol uptake. 
NFE2L3 is involved in ubiquitin protein ligase activity 
and transcription coactivator activity to bind antioxidant 
response elements. The FOXP1 gene is associated with 
signaling pathways such as Wnt/Hedgehog/Notch.

The most significant probe was cg19693031 
(p = 3.37 × 1024 ), which mapped to thioredoxin interact-
ing protein (TXNIP), which was hypomethylated and 
located in the open sea on chromosome 1q21.1. This site 
has been widely reported to be hypomethylated in T2D 
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[33, 34]. In addition, we identified other significant DMPs 
(cg02988288, cg26974062) in TXNIP associated with 
MetS and its components (p < 2.0 × 1010 for all). These 
sites were associated with the TxFlnk (transcription at 
gene 5′ and 3′) region, which was reported to have both 
promoter and enhancer signatures, or the TssAFlnk 
region, which represents active TSS-proximal promoter 
states (Table 1) [26]. An additional CpG site, cg26823705, 
within NBPF20 was also located in 1q21.1 and nega-
tively associated with MetS. For each MetS component, 
we identified 63 (41 hypomethylated) CpGs for TG, 47 
(20 hypomethylated) CpGs for FAG, 12 (11 hypometh-
ylated) CpGs for HDL, 9 (7 hypomethylated) CpGs for 
WC, and 2 (2 hypomethylated) CpGs for SBP (Additional 
file 3: Tables S6–S10). However, there were no significant 
DMPs for DBP.

EWAS identified significant DMRs for MetS and its 
components and its association with DMPs
Using region-based meta-analysis p values for individ-
ual CpGs as input, we identified 27 DMRs associated 
with MetS status at the 5% Sidak p value after multiple 
comparison corrections (Table  2). The most significant 

DMR, which encompassed 3 probes, was located at 
TXNIP (chr1:145440444–145441553, 2.5  kb from TSS, 
p value = 2.35 × 10−58). Importantly, this DMR was asso-
ciated with the same gene as the top DMPs. Ten DMRs 
(located in the SCD, DOK3, TNFA1P8, TNF, CPT1A, 
OXT, TM4SF1, TCTEX1D4, IL5RA, and SFRP2 genes) 
were located in the promoter region. These DMR-asso-
ciated genes were implicated in the immunological 
pathway, lipid metabolism, and signaling pathway. For 
example, the DMR gene SCD is associated with fatty acid 
(stearoyl-CoA) biosynthesis, while the DMR gene DOK3 
is involved in the Ras signaling pathway.

Furthermore, we analyzed intersections between genes 
corresponding to DMPs and genes corresponding to 
DMRs within MetS and each of its components individu-
ally (Fig. 3, Additional file 3: Table S11). The majority of 
the DMPs that overlapped with DMRs were limited to 
a single probe. The genes exhibiting an overlap between 
significant DMRs and DMPs for MetS were TXNIP, 
BAIAP2 and KLHDC4; only five CpGs overlapped with 
DMR on these three genes. The significant DMPs and 
DMR overlapped within the TXNIP gene for FAG and TG 
as well as for MetS. We also observed that a significant 

Fig. 1  A Proportion of hypermethylation vs. hypomethylation in MetS and its components in meta-analysis. B Functional genomic distribution 
and neighborhood location of hyper and hypomethylated CpG sites in MetS and its components. The promoter region is located within 2 kb 
from the transcription start site. Intergenic regions are defined as the remainder of locations located between genes. C Distribution of genomic 
feature between hyper and hypo DMPs for MetS. Shores and shelves are composed of CpG methylation sites located 0–2 kb and 2–4 kb, 
respectively, from the nearest CpG Island; the open sea is defined as CpG methylation sites located > 4 kb from a CpG island. MetS, metabolic 
syndrome; TG, triglyceride; FAG, fasting glucose; HDL. High-density lipoprotein; WC, waist circumference
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DMP was in the DMR-associated gene KLHDC4 (located 
at chr16:87781335–87782145), which is involved in intes-
tinal inflammation in FAG as well as MetS [35]. Although 
there was no specific overlap, significant DMPs and 
DMRs coexisted within the BAIAP2 gene.

Since MetS components are strongly interconnected 
with MetS [36], we investigated whether significantly 
methylated CpG sites in MetS are linked to other MetS 
components simultaneously. Therefore, we proceeded to 
explore the areas of overlap between MetS and its indi-
vidual components within DMPs and DMRs separately 
(Fig. 4). Among the CpG sites associated with MetS, 18 
CpG sites exhibited the most notable overlap with vari-
ous MetS components. Of these, nine CpGs correspond-
ing to 7 genes exhibited overlap in MetS, TG, and FAG. 
The site cg00574958 at CPT1A was significant in MetS, 
TG and SBP. Five CpG sites (cg00683922, cg00857282, 
cg06500130, cg11024682, and cg27243685) overlapped 
with the three MetS components, regardless of their 
direct association with MetS itself. For example, the 
cg06500161 site on ABCG1 was observed in TG, FAG, 
and HDL, indicating that this CpG site overlapped with 
these three Mets components but not with MetS itself.

In the case of DMRs, the region with the high-
est degree of overlap between MetS components and 
MetS is located within CPT1A, which was differentially 

methylated in MetS, TG, WC, and FAG (Fig.  4). Addi-
tionally, KLF6 and SCD also overlapped among MetS, 
TG, and FAG. Similar to DMPs, the most significant 
DMR-associated gene in each phenotype tends to overlap 
with both MetS and its individual components.

Neighboring CpGs have a higher likelihood of exhibit-
ing similar methylated patterns. Therefore, we conducted 
a more detailed examination of the comethylation pat-
terns by elucidating the genomic regions around the 
predominant CpG sites using the coMET plot (Fig. 5A). 
Visualization of regional DNA comethylation pat-
terns showed that the most significant CpGs around 
the TXNIP gene had similar patterns in the same direc-
tion. Based on ENCODE data extracted from the UCSC 
GenomeBrowser (GRCh37/hg19 assembly), we found 
that the TXNIP sites overlapped with at least one cru-
cial regulatory element, suggesting their location within 
a weak promoter region (Fig. 5A, pink in Broad Chrom-
HMM). These regions are likely to play a role in tran-
scriptional activity. In addition, we identified a nearly 
identical correlation pattern associated with three CpGs 
of TXNIP in the TG and FAG, as well as MetS (Fig. 5B).

Gene set enrichment analysis for MetS by DMPs and DMRs
To explore the biological processes influenced by DNA 
methylation, we conducted a gene set enrichment 

Fig. 2  Miami plot using epigenome-wide meta-analysis for metabolic syndrome (n = 2334). The red line indicates the epigenome-wide significance 
level threshold to account for multiple testing (p < 7 × 10−8)



Page 8 of 14Lee et al. Clinical Epigenetics           (2024) 16:60 

analysis using the Molecular Signature DataBase 
(MSigDB) Hallmark and GO gene set, employing meta-
analyzed differentially methylated genes. As a result, 
we identified a high overlap between DMPs and DMRs 
associated with MetS, which induced differential meth-
ylation enriched at genes involved in inflammatory 
pathways, including TNF/IFN/NF-KB/STAT (tumor 
necrosis factor/interferon/signal transducers and activa-
tors of transcription) signaling pathways, as identified in 
the hallmark supersets. Additionally, the GO biological 
pathways illustrated glucocorticoid metabolic processes 
and steroid metabolic processes (Fig.  6) through both 
DMPs and DMRs. Glucocorticoids are steroid hormones 
synthesized by the adrenal cortex and play a crucial role 
in regulating a wide range of metabolic and homeostatic 
functions [37]. Collectively, these results suggest that the 
MetS state is associated with alterations in inflammatory 
function and hormone responses. Full tables of hallmark 
and GO pathway results can be found in Additional file 3: 
Tables S12 and S13.

meQTL and MR analysis
Methylation quantitative trait loci, known as meQTLs, 
may represent specific genetic variants that respond to 
DNA methylation changes, thus potentially influenc-
ing MetS states. To investigate whether SNPs might 
be responsible for driving the methylation differences 
observed in MetS, we performed further analyses to 
identify meQTLs that influence the methylation lev-
els of significant CpGs (Additional file 3: Table S14). To 
perform MR, we first checked the three assumptions 
for MR for causal estimates using two-sample MR. The 
results are summarized in Additional file  3: Table  S3. 
Under the assumption of selecting the IV, we detected 
3,212 cis-mQTLs. After FDR correction, we identified 
144 cis-meQTLs that were associated with DNA meth-
ylation at 13 of the 40 DMPs related to MetS (Additional 
file  3: Table  S14). The MR analysis identified 2 putative 
causal CpGs, cg01881899 at ABCG1 and cg00021659 at 
TANK, from meQTL-CpG pairs for MetS with multiple 
testing correction (PMR < 0.05/13, Table 3), and there was 

Table 2  The significant differential methylated regions by epigenome-wide meta-analysis for metabolic syndrome

DMR, differential methylated region; N_probes, number of probes for DMR; +, upstream from transcription start site (TSS); −, downstream from transcription start site

DMR N_probes Genes (distance to TSS) P value Sidak P value

chr1:145440444–145441553 3 TXNIP(+ 2530) 1.27E−38 3.65E−32

chr16:87781335–87782145 5 KLHDC4(+ 17,815) 7.38E−21 5.26E−19

chr10:102107583–102107758 4 SCD(+ 790) 5.39E−13 2.21E−09

chr5:150466792–150466840 3 DOK3(+ 130) 1.90E−12 2.89E−08

chr5:176936562–176936893 5 TNIP1(− 5819) 2.02E−12 4.39E−09

chr5:118689954–118689975 3 TNFAIP8(− 44) 2.38E−12 8.52E−08

chr12:26424986–26425212 5 SSPN(+ 76,670) 1.25E−11 3.97E−08

chr15:29407791–29408146 4 NDNL2(+ 154,064) 3.70E−11 7.48E−08

chr3:18480241–18480707 5 SATB1(− 14,409) 5.49E−10 8.44E−07

chr8:42037965–42038196 3 PLAT(+ 27,161) 5.83E−10 1.81E−06

chr6:31543539–31543687 8 TNF(+ 269) 6.19E−10 3.01E−06

chr11:68607621–68607738 4 CPT1A(+ 1704) 9.83E−10 6.06E−06

chr1:45274031–45274056 3 TCTEX1D4(− 1087) 2.04E−09 6.09E−05

chr10:44757322–44757371 3 CXCL12(+ 123,150) 2.98E−09 4.44E−05

chr20:3051953–3052346 10 OXT(− 116) 3.73E−09 6.81E−06

chr17:79005385–79005663 4 BAIAP2(− 3438) 5.55E−09 1.43E−05

chr3:149094652–149094893 3 TM4SF1(+ 879) 5.84E−09 1.74E−05

chr13:50702409–50702915 6 DLEU1(+ 46,355) 1.12E−08 1.58E−05

chr6:106546539–106546825 6 PRDM1(+ 12,487) 1.18E−08 2.96E−05

chr3:18459837–18459999 3 SATB1(+ 6147) 1.79E−08 7.94E−05

chr10:4093709–4093926 4 KLF6(− 266,351) 1.97E−08 6.51E−05

chr5:142562352–142562570 3 NR3C1(+ 220,793) 2.68E−08 8.84E−05

chr3:3151739–3152039 3 IL5RA(+ 169) 4.16E−08 9.94E−05

chr4:154711511–154711630 5 SFRP2(− 1299) 4.64E−08 2.81E−04

chr10:14062053–14062218 3 FRMD4A(+ 310,747) 6.57E−08 2.86E−04

chr3:156807519–156807692 4 CCNL1(+ 70,396) 7.52E−08 3.12E−04

chr10:6187993–6188416 4 PFKFB3(− 56,689) 8.51E−08 1.44E−04
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no evidence of heterogeneity among the genetic instru-
ments (p for Q-statistics). The causal CpGs were nega-
tively associated with MetS.

Discussion
It is crucial to identify the methylation sites or regions 
that play a causal role in MetS and elucidate how they 
interact with its component traits. This is vital for better 

understanding the underlying disease mechanisms for 
MetS, particularly in the context of complex diseases. 
In this study, we conducted EWAS on whole blood cells 
from 1526 MetS cases and 808 controls in a Korean 
population. As results, we found numerous DMPs and 
DMRs, which involved in the inflammatory response 
and lipid metabolism related to MetS. In particular, the 
presence of significant DMPs and DMRs that overlap 

Fig. 3  Venn diagrams showing overlap between genes corresponding to DMPs and genes corresponding to DMRs in each MetS and its 
components. The numbers of DMPs (green) and DMRs (pink) corresponding to genes are presented for each phenotype (A–F)

Fig. 4  Venn diagrams showing overlap and unique DMPs and DMRs among MetS and its components. The gene TXNIP overlaps across MetS, TG 
and FAG in both DMPs and DMRs
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Fig. 5  Metabolic syndrome-associated DNA methylation signals in TXNIP. A coMET plot describing the genomic region of association 
between TXNIP methylation and metabolic syndrome (top panel), along with functional annotation of the region (middle panel), and the pattern 
of comethylation at 23 CpG sites of TXNIP (bottom panel). B Correlation of DNA methylation at differentially methylated probes with TG and FAG

Fig. 6  Gene set enrichment analysis using hallmark and gene ontology (GO) gene set database for DMP and DMR. DMP, differentially methylated 
probes for metabolic syndrome; DMR, differentially methylated regions for metabolic syndrome. The red bar includes the hallmark gene sets 
that represent key biological processes. GO Ontology categories genes by Biological Process (BP, purple), Cellular Component (CC, green), 
and Molecular Function (MF, yellow). P value is adjusted for hypergeometic test
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with different components of MetS strongly suggests that 
they may collectively contribute to the manifestation of 
the disease. Furthermore, we were able to identify causal 
CpG sites influenced by genetic factors through MR.

It is highlighted that decreased DNA methylation at 
the top signals, specifically cg19693031, cg0298828, and 
cg26974062 in TXNIP, was associated with MetS status 
with elevated levels of FAG and TG. This association was 
further supported by significant DMRs observed for the 
same phenotypes. The CpG site with the strongest asso-
ciation (cg19693031) with MetS has been extensively 
studied and has shown links to blood lipid levels [38, 39], 
blood pressure [40], central obesity [41], and the preva-
lence of T2D and type 1 diabetes [33, 42, 43].

The hypomethylation of TXNIP (cg19693031) has previ-
ously been reported to be associated with MetS in Japanese 
and European populations. [6, 8] Similarly, other DNA 
methylation sites, including cg26974062 and cg02988828, 
have shown associations with maternal hyperglycemia 
and T2D as cg19693031 [44]. In contrast to cg19693031, 
the relationship between cg26974062 and cg02988828 
and their association with these conditions has not been 
extensively studied or firmly established. Tobi et  al. [44] 
commented that these two CpG sites are unique probes 
in the EPIC array. TXNIP serves as a pivotal regulator of 
glucose and lipid metabolism through multifunctional 
roles, such as modulating ꞵ-cell function, hepatic gluco-
neogenesis, peripheral glucose uptake, and adipocyte dif-
ferentiation [45, 46]. Moreover, TXNIP plays a role across 
a broad spectrum of multiple cellular processes, includ-
ing proliferation, differentiation, apoptosis, metabolism, 
and inflammation [34]. A significant finding in our study 
is the observation that three distinct DMPs located within 

a specific region of TXNIP collectively exert an influence 
on both MetS and its components, particularly FAG and 
TG levels. Notably, we confirmed 3 significant DMPs of 
TXNIP with DMR result. Based on these results, it can 
be speculated that DNA methylation, including the three 
CpG sites within TXNIP, exerts an influence on FAG and 
TG levels, thus playing a crucial role in the epigenetic pro-
cesses involved in the development of MetS.

In general, studies with large sample sizes (> 1000) have 
estimated that approximately 10% to as much as 45% of 
the methylome is influenced by nearby meQTLs [11, 47]. 
MR provided evidence of a causal effect of DNA methyla-
tion associated with lead SNPs on multiple phenotypes. 
Therefore, pairwise association analyses were performed 
for target meQTL-24K SNP pairs and significant CpGs 
related to MetS and its components, as measured in 
blood samples from participants. Finally, we identified 
144 meQTLs, among which only 13 CpGs (having > 3 
meQTLs) were considered suitable for testing the cau-
sality of DNA methylation on MetS. After adjusting for 
multiple testing, the MR analysis finally identified two 
CpGs (cg01881899 of ABCG1 and cg00021659 of TANK) 
as potential causal factors influenced by genetic effect for 
MetS. While cg01881899 did not align with the significant 
CpG sites of the ABCG1 DMR, both DMPs and DMRs of 
ABCG1 were linked to TG and FAG levels (Fig. 4).

Our study identified that cg01881899 of ABCG1 is a 
CpG site influenced by 7 meQTL for MetS (Table 3), and 
it is also associated with TG [48], BMI [49] and HOMA-
IR [50]. However, there has been limited research on the 
association between meQTLs and these phenotypes. 
We also found that the CpG site cg00021659 of TANK 
was influenced by 41 meQTL on MetS in this study 

Table 3  Mendelian randomization of metabolic syndrome using cis-meQTL

IV, inference variables; IVW, inverse variable weight; WM, weight-median; For CpGs that tested causal for MetS and its components are shown in this table

CpGs Gene N of IV IVW WM Cochran-Q Phetero

Estimate se Pivw Estimate se Pwm

cg08357961 DISC1 15  − 3.67 1.65 0.03  − 1.05 2.39 0.66 13.68 0.47

cg08269908 ADGRG3 5 2.36  − 3.83 0.54 2.36 4.61 0.61 0.04 0.99

cg17075888 PDK4 36  − 2.82 0.77 2.59E − 04  − 2.45 1.02 0.02 5.96 0.99

cg09880921 IGF1R 7  − 7.83 4.28 0.07  − 9.85 4.18 0.02 18.61  < 0.001

cg00980461 AC002451.3 26  − 4.91 1.35 2.85E − 04  − 4.28 1.92 0.03 10.60 0.01

cg01881899 ABCG1 7  − 7.28 11.45 8.37E − 10  − 7.61 6.96 1.30E − 05 0.61 0.99

cg27035734 RASSF9 57  − 1.28 0.49 0.01  − 0.60 0.59 0.30 65.49 0.18

cg21623127 LIX1 6  − 8.05 3.04 0.01  − 8.08 3.80 0.03 0.02 0.99

cg00021659 TANK 41  − 9.11 1.21 2.10E − 07  − 8.10 1.58 3.52E − 07 13.49 0.99

cg00073751 LGR6 25 1.823 2.02 0.37 3.41 2.58 0.19 6.02 0.99

cg24562906 RNY4P18 6 3.344 3.54 0.34 2.40 4.39 0.58 1.04 0.96

cg08822075 NFE2L3 8 2.082 3.03 0.56 2.89 3.45 0.40 10.36 0.17

cg08761535 ZNRF1 6 1.362 3.42 0.69 2.23 4.12 0.59 0.56 0.99
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(Table  3). We identified that cg00021659 is located in 
the 5’UTR and TssAFlnk state. TRAF family member-
associated NF-kB activator (TANK) is a negative regu-
lator of I-kappaB kinase/NF-kappaB signaling. A recent 
review has implicated the transcription factor NF-κB in 
the development of metabolic disorders, such as obesity, 
type 2 diabetes, and atherosclerosis [51]. However, it is a 
de novo CpG site that has not previously been reported 
to be associated with MetS and its components. It is 
known that genetic variants can influence a proportion of 
human DNA methylome. Our results may help establish 
causal relationships between genetic variants and DNA 
methylation and help to elucidate the underlying mecha-
nisms of MetS.

There are some limitations with our study. First, we 
have DNA methylation data generated in whole blood, 
which includes multiple cell components. DNA meth-
ylation patterns are highly cell type- or tissue-specific, 
reflecting different methylation patterns that can vary 
depending on physiological conditions or disease states 
[52]. Although we controlled for cellular heterogeneity as 
a covariate, the putative effects of DNA methylation for 
MetS and its components in whole blood might not be 
identical to those occurring in target tissues involved in 
metabolic dysfunctions (i.e., adipose tissue, liver, etc.). 
Secondly, we need to ensure the reproducibility of the 
studies included in our meta-analysis to provide objec-
tive conclusions, which was challenging due to the lack 
of ethically matched samples. Future studies should be 
undertaken on MetS with a large number of samples as 
replication cohorts for facilitating cumulative scientific 
knowledge. Nevertheless, the discovery of changes of 
DNA methylation with regulatory state and meQTLs 
which can be essential for gene expression for MetS, may 
contribute the advancement of our understanding of the 
molecular pathways and help toward the development of 
therapeutic targets.

Conclusion
We present meta-analysis involving MetS, highlighting 
numerous DMPs and DMRs in whole blood which are 
involved in inflammatory pathway, glucocorticoid meta-
bolic processes and steroid metabolic processes. Espe-
cially 3 DMPs (cg19693031, cg26974062, cg02988288) 
and DMR (chr1:145440444–145441553) at TXNIP 
were significantly changed and warrant further study 
to explore their role in disease etiology. In addition, we 
identified a total of 144 cis-meQTLs, out of which only 
13 were found to be associated with DMPs for MetS. Our 
results provide a comprehensive understanding of DMPs 
and DMRs in MetS and its components, as well as spe-
cific genetic effects on DNA methylation, subsequently 
affecting MetS status. We expect that these findings will 

be of use to the scientific community for further studies 
of epigenome regulation for MetS, and they may contrib-
ute to future research for prevention of MetS through 
epigenetic mechanisms.
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