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Kidney-specific methylation patterns 
correlate with kidney function and are lost 
upon kidney disease progression
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Abstract 

Background Chronological and biological age correlate with DNA methylation levels at specific sites in the genome. 
Linear combinations of multiple methylation sites, termed epigenetic clocks, can inform us the chronological age 
and predict multiple health-related outcomes. However, why some sites correlating with lifespan, healthspan, or spe-
cific medical conditions remain poorly understood. Kidney fibrosis is the common pathway for chronic kidney disease, 
which affects 10% of European and US populations.

Results Here we identify epigenetic clocks and methylation sites that correlate with kidney function. Moreover, 
we identify methylation sites that have a unique methylation signature in the kidney. Methylation levels in majority 
of these sites correlate with kidney state and function. When kidney function deteriorates, all of these sites regress 
toward the common methylation pattern observed in other tissues. Interestingly, while the majority of sites are 
less methylated in the kidney and become more methylated with loss of function, a fraction of the sites are highly 
methylated in the kidney and become less methylated when kidney function declines. These methylation sites are 
enriched for specific transcription-factor binding sites. In a large subset of sites, changes in methylation patterns are 
accompanied by changes in gene expression in kidneys of chronic kidney disease patients.

Conclusions These results support the information theory of aging, and the hypothesis that the unique tissue iden-
tity, as captured by methylation patterns, is lost as tissue function declines. However, this information loss is not ran-
dom, but guided toward a baseline that is dependent on the genomic loci.

Significance statement DNA methylation at specific sites accurately reflects chronological and biological age. 
We identify sites that have a unique methylation pattern in the kidney. Methylation levels in the majority of these 
sites correlate with kidney state and function. Moreover, when kidney function deteriorates, all of these sites 
regress toward the common methylation pattern observed in other tissues. Thus, the unique methylation signature 
of the kidney is degraded, and epigenetic information is lost, when kidney disease progresses. These methylation 
sites are enriched for specific and methylation-sensitive transcription-factor binding sites, and associated genes show 
disease-dependent changes in expression. These results support the information theory of aging, and the hypothesis 
that the unique tissue identity, as captured by methylation patterns, is lost as tissue function declines.
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Introduction
Chronic kidney disease (CKD)
The human kidney plays several essential roles, including 
the excretion of toxic waste products and maintenance of 
blood pressure and pH. The average kidney contains ~ 1 
million nephrons, which are its main functional units 
[1]. CKD is defined as loss of renal function, marked 
by decreased glomerular filtration rate (GFR) < 60  mL/
min/1.73m2, and increase in kidney damage markers 
(e.g., albuminuria), or both, for ≥ 3  months [2]. Renal 
function can be assessed using serum creatinine (sCr) 
levels, used to compute the estimated Glomerular Filtra-
tion Rate (eGFR) via one of several formulae [3]. Unfor-
tunately, sCr-based assessments are highly inaccurate for 
several reasons: (1) sCr is highly insensitive for diagnos-
ing early CKD, as abnormalities in its values occur only 
when ~ 40% of the renal parenchyma is damaged [4]. 
Indeed, many individuals with normal sCr actually have 
kidney damage upon histological examination including 
interstitial fibrosis (IF), tubular atrophy (TA) and glo-
merulosclerosis (GS)—all indicative of impaired renal 
function [5–7]. CKD is a relentless disorder, steadily 
deteriorating from its early stages (1–2) in which the GFR 
is normal or high to stage 5, or end-stage kidney disease 
(ESKD), defined as a GFR < 15  ml/min/1.73m2, when 
patients require kidney replacement therapy (KRT): 
either dialysis or transplantation [2]. With a prevalence 
of up to 17.3% [8–10] requiring expensive treatments, 
CKD is a global epidemic, accounting for over 1.2 mil-
lion deaths a year [11]. Moreover, its true prevalence is 
hard to determine, because its early stages often go unde-
tected. CKD rates are expected to keep rising due to the 
aging of the population and growing prevalence of its 2 
main risk factors: diabetes mellitus (DM) and hyperten-
sion (HTN) [11]. The irreversible nature and lack of spe-
cific treatments for CKD underscore the importance of 
its early diagnosis, while renal function is preserved and 
active interventions (e.g., glycemic control in DM) may 
slow its progression, which will improve quality of life, 
reduce mortality, and reduce the costs for healthcare sys-
tems [12].

DNA methylation correlates with lifespan, 
healthspan and CKD
DNA methylation is an epigenetic modification, and 
the most studied one in relation to diseases, health-
span and lifespan. Seminal works by Horvath and Han-
num described "epigenetic clocks," a linear combination 
of the methylation levels of several tens to hundreds of 
genomic sites, which accurately estimate the biological 
age of most human tissues, including the kidney [13–15]. 
These clocks have been expanded to predict “biological 
age,” capture multiple aspects of healthspan and predict 

all-cause mortality [13]. Similarly, methylation sites can 
be used as surrogates for plasma protein levels. Proving 
the relevance of epigenetic signatures to renal function, 
the Susztak group profiled genome-wide methylation of 
tubular cells in CKD and normal kidneys and found that 
a 65-probe signature correlates with kidney structural 
damage, as seen in biopsy, and a 471-probe signature 
predicts renal functional decline together with clinical 
parameters [16]. Likewise, it has been recently shown 
that the progression of CKD is tightly linked to methyl-
ation-induced changes in tubular cell function, including 
senescence [17]. Late stage CKD is also associated with 
increased biological age, as predicted by DNA methyla-
tion patterns in blood samples. This increase is reduced 
upon kidney transplant, but not by dialysis [18]. Remark-
ably, renal methylation signatures also accurately reflect 
the presence of kidney cancer, with the methylome of 
RCC cells exhibiting a significantly older biological age, 
a phenomenon seen in a wide range of cancers. Moreo-
ver, it has been shown that specific DNA methylation 
signatures predict various clinical outcomes and corre-
late with renal function [13, 19–21]. Although previous 
studies looked into the relation between DNA methyla-
tion and kidney diseases [16, 21–24], their selection of 
disease-associated methylation sites was extracted from 
comparing methylation arrays for healthy and sick kidney 
tissues. However, no analysis was done by pre-selecting 
sites predicted and validated to be correlated with disease 
progression.

Changes in DNA methylation alter 
transcription‑factor binding
DNA methylation often correlates with transcription lev-
els. Epigenome-wide association studies (EWAS) using 
kidney and blood samples demonstrated that methyla-
tion at specific CpG sites are associated with kidney dis-
ease [22, 23, 25–29]. Methylation and demethylation can 
have direct effects on expression levels in  vivo [30, 31], 
thus suggesting that some of the correlations might have 
a causal component to them. Methylation signatures can 
alter binding for some transcription factors (TF) [32, 33], 
which can mechanistically explain some of this effect. 
Indeed, EWAS studies, conducted in blood and validated 
in the kidney, found correlations between CpG methyla-
tion level and kidney expression levels of genes correlated 
with kidney function [21, 23].

Here, we identify epigenetic clocks and CpG sites 
that correlate with the functional state of the kidney, as 
captured by IF and eGFR. A subset of these CpG sites, 
selected in an undirected fashion, show a kidney-specific 
methylation pattern when compared to other tissues. 
Moreover, the majority of sites showing a kidney-specific 
methylation pattern correlate with IF. Multiple genes 
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associated with these sites are changed in CKD. Interest-
ingly, all these sites lose their unique methylation pattern 
in CKD, while trending toward the common form.

Results
Specific epigenetic clocks correlate with eGFR and IF
CKD progression is accompanied by a decrease in eGFR 
and an increase in IF [5–7]. Several studies have analyzed 
the methylation of DNA in kidney tissue and identi-
fied CpGs whose methylation levels correlate with these 
markers of kidney disease progression [21, 22, 34]. To 
test whether eGFR decrease and IF increase are cap-
tured by existing epigenetic DNA methylation clocks, 

we analyzed 85 publicly available kidney methylation 
arrays [22, 34]. Samples were exclusively of kidney tissue, 
with an average age of 63 (standard deviation 11  years) 
and 53% males. Average eGFR was 67 (standard devia-
tion 25). Multiple clocks showed a significant correla-
tion with eGFR and IF (Fig. 1; Additional file 1: Table S1, 
S2). We noticed substantial differences in specific clock 
performance between males and females, thus we per-
formed male and female analyses independently (Fig.  1; 
Additional file 1: Tables S2–S4). Of all clocks tested, Epi-
genetic Age (Zhang) and DNAmB2M, a surrogate for 
Beta-2-Microglobulin (B2M), performed best in males, 
giving correlations of − 0.60 and − 0.55 (p = 4 ×  10–4) to 

Fig. 1 Methylation clocks correlate with kidney state in males. Correlation of age, eGFR and IF with four epigenetic clocks: GrimAge, PhenoAge, 
B2M and PAI1. Males—red; Females—blue. Regression line with all samples—black
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eGFR and 0.75 (p = 7 ×  10–8) to IF. By contrast, in females, 
DNAmPhenoAge gave a correlation of − 0.39 (p = 0.017) 
to eGFR and DNAmPAI1, a surrogate for Plasmino-
gen Activator Inhibitor-1 (PAI1), a correlation of − 0.39 
(p = 0.015) to IF. Age and BMI, two potential confound-
ers, were poorly correlated with these clocks (Additional 
file 1: Tables S2–S4). In males, the age-adjusted B2M sur-
rogate (DNAmB2MAdjAge) has a lower, but still signifi-
cant correlation to both eGFR and IF. Similarly, results 
were obtained for PAI1 and IF in females. By contrast, 
age-adjusted PhenoAge in females did not significantly 
correlate with neither eGFR nor IF (Additional file  1: 
Tables S2–S4). We note that none of the tested clocks 
and surrogates were not designed to estimate kidney 
state, nor trained on relevant tissues. We concluded that 
some aspects of the physiological state of the kidney are 
reflected in the methylome and captured by epigenetic 
clocks not specifically developed for this purpose.

Multiple CpG sites show strong correlation to eGFR 
and IF
Alternative methylation sites may provide an even bet-
ter estimate of tissue state. Despite the small number of 
arrays, 1975 sites showed a statistically significant cor-
relation (after Bonferroni correction) for eGFR, with 
correlation values up to r = 0.74 (Fig.  2A, B, Additional 
file 3: Figure S1; Table S5). We tested if these results can 
be explained by simple global loss or gain of methyla-
tion. Of the 1975 sites, 42% positively and 58% negatively 
correlated with eGFR, excluding global unidirectional 
changes as drivers of these methylation patterns. For IF, 
20,986 sites passed Bonferroni correction, with r as high 
as 0.89 (Fig. 2C, D, Additional file 3:Figure S1; Additional 
file 1: Table S6). Of these, 67% showed a positive correla-
tion and 33% a negative correlation. To test for the pos-
sibility that age, sex, race or BMI act as confounders, we 
measured their correlation with eGFR and IF in this data-
set. Additionally, we examined the correlation of top 10 
CpG sites with age and BMI in this and the independent 
NGDC-CNCB [35] dataset. In all cases, correlation to 
age, sex and BMI was weak or negligible, excluding them 
as confounders (Additional file  3: Figure S1; Additional 
file  1: Table  S7). We took a closer look at cg10832035, 
the site with the highest correlation to eGFR (r = − 0.74; 
p <  10–13). As expected, it also showed a strong correla-
tion to IF (r = 0.77, p <  10–14). cg10832035 was located on 
a CpG island inside the non-coding gene RP5-1086L22.1. 
The adjacent methylation sites within the island, but not 
outside the island, exhibited a similar methylation pat-
tern and correlation to IF (r = 0.7; p <  10–10) and eGFR 
(r = − 0.64; p <  10–8), excluding possible probe issues. 
Interestingly, this site was almost completely methylated 
in all tissues except the kidney (Fig.  2E). In the kidney, 

methylation levels averaged around 0.35, and tended to 
increase with IF and decline in eGFR.

CKD‑correlated CpG sites are enriched for TF 
binding sites
To test for potential biological significance, sequences 
surrounding these CKD-correlated sites were used for 
motif enrichment analysis. Indeed, these sequences 
were enriched for TF binding sites. Specifically, sites 
that positively correlated with IF showed enrichment for 
the HNF1 family, while negatively correlated sites were 
enriched for Jun/FOS (Fig. 3). Gene associated with eGFR 
and IF correlated sites were used in functional annotation 
analysis (Additional file 1: Tables S8–S10; [36]), however 
associations were relatively weak.

Kidney‑specific methylation patterns are lost 
with kidney disease progression
Tissue-specific differentially methylated regions (tsD-
MRs) can have tissue-specific roles [37, 38]. After notic-
ing the unique methylation pattern of cg10832035, we 
sought to test whether this is a general phenomenon. 
Using the NGDC-CNCB [35] dataset, we identified 427 
methylation sites that exhibit a unique methylation pat-
tern in the kidney (Additional file 1: Table S11). Of these 
sites, 68% were in the top 10% (r > 0.47; p < 4 ×  10–5) of 
sites correlated with IF. Removing CpG sites with sig-
nificant missing data increased this percentage to 72% 
(208 of 289; expected: 29; p =  10–322; Additional file  1: 
Table  S11). Thus, the vast majority of uniquely methyl-
ated kidney sites exhibit changes in their methylation 
patterns as kidney function declines. To account for age 
bias, we analyzed the methylation distribution over a 
wide age range and observed no significant correlation 
between age and methylation for these kidney-unique 
sites (Additional file 3: Figure S2).

Two non-exclusive mechanisms can account for the 
observed changes to these kidney-specific methylation 
sites. Changes of cell populations and within cell popula-
tions may result in regression to the mean in these sites. 
Both mechanisms appear to contribute to this phenom-
enon [39]. Deconvolution analysis using EpiSCORE [40] 
found that the fraction of fibroblasts and immune cells, 
but not endothelial or epithelial cells, changed with IF 
(Additional file 3: Figure S3). These results may partially 
or fully account for the observed changes.

Functional decline is accompanied by a drift 
toward the common methylation pattern
Cg10832035 is partially methylated in the kidney, but 
almost completely methylated in every other tissue 
examined (Fig.  3E). Indeed, we found this to be the 
common scenario. Of the 289 sites analyzed, 253 (88%) 
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had a lower methylation level in the kidney as com-
pared to the rest of the tissues, while only 36 (12%) 
had a higher methylation level. Upon kidney func-
tional decline, cg10832035 becomes more methylated, 

trending toward the common methylation state of all 
other tissues examined. More generally, this raises 
three distinct possibilities, that upon functional decline 
(i) methylation levels increase; (ii) methylation levels 

Fig. 2 Individual CpG sites correlate with kidney state. A. Volcano plot of all tested CpG sites and their correlation to eGFR. Dots above the dashed 
line (red) pass Bonferroni correction. B. Individual methylation and eGFR levels for cg10832035, the site with highest correlation to eGFR (arrow in A). 
C. Volcano plot of all tested CpG sites and their correlation to IF. D. Individual methylation and eGFR levels for cg00355019, the site with highest 
correlation to IF (arrow in C). E. cg10832035 methylation patterns in a subset of tissues from the NGDC-CNCB dataset
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Fig. 3 Methylation sites that correlate to IF are enriched for specific TF binding sites. TF enrichment and p-values for sequences around CpG sites 
that positively correlate with IF (left), do not correlate with IF (middle; between the red lines) and negatively correlate to IF (right)
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trend toward the common form; (iii) methylation may 
increase or decrease independently of the common 
form. To distinguish between these three possibilities, 
we examined the levels of methylation in kidneys with 
different levels of fibrosis. For all 289 sites, methylation 
level trended toward the common methylation pattern 
found in the rest of the body (p =  10–87), increasing in 
the 253 sites that are less methylated in the kidney com-
pared to other tissues (Fig. 4A) and decreasing in the 36 
sites that are more methylated in the kidney (Fig. 4B). 
Moreover, there was a positive correlation between 
the site’s “uniqueness,” quantified as its distance from 
methylation levels in all other tissues, and its correla-
tion with the IF score (Fig.  4C; r = 0.95 p <  10–148). We 
conclude that the unique methylation pattern of the 
kidney erodes as kidney function declines.

Characterization of kidney‑specific methylation 
sites
Methylation patterns may be influenced by protein-DNA 
interaction, which in turn is guided by the primary DNA 
sequence [41]. To identify motifs that may help estab-
lish or maintain these unique methylation patterns, we 
extracted the sequences surrounding the 253 under-
methylated and 36 overmethylated identified sites, and 
looked for motif enrichment. De novo motif discovery, 
using random CpG sites as background, identified mul-
tiple sequences showing strong enrichment (Additional 
file 3: Figure S4). Not surprisingly, these included signifi-
cant enrichment for motifs identified in CpGs that cor-
related with CKD progression. To identify sequences that 
potentially contribute to the unique methylation pattern, 
while removing general CKD background, we repeated 
this analysis using as background CpG sites that corre-
late with IF, but do not have a unique methylation pat-
tern. Again, multiple motifs were identified, including 
HNF1 and HIF2a (Additional file  3: Figure S5). How-
ever, the 253 sites identified differ significantly from both 
backgrounds. As most sites are almost fully methylated 
in all but one tissue, they may differ in GC content from 
the background. Indeed, the average GC percentage of 
both backgrounds, as well as the methylated-in-kidney 
sites, was ~ 55%. In contrast, the 253 sites, predomi-
nantly methylated in the body but not in the kidney, had 
an average GC content of 45%. Thus, we also compared 
these sites to those with unique methylation patterns in 
other tissues. Again, significant enrichment for specific 
transcription factors such as HNF1 was observed (Addi-
tional file 3: Figure S6).

Next, we analyzed methylation sites for tissue-specific 
differentially methylated positions (DMPs). eFORGE 2.0 
[42] was used to identify such sites by overlap with DNase 
I hypersensitive sites (DHSs) compared to matched back-
ground. Only kidney-unique undermethylated sites had 
DHS (p <  10–20), and only in kidney (Additional file 3: Fig-
ure S7A, B). Next, we characterized the chromatin state 
of these sites. These sites were identified as enhancer sites 
(p <  10–30), but only in undermethylated sites and only in 
kidney (Additional file 3: Figure S7C, D).

Expression change of genes associated 
with kidney‑specific methylation patterns
Changes in methylation levels are often associated with 
changes in gene expression [41]. Depending on the 
genomic context, these changes can be causal or non-
causal, and can involve an upregulation or downregula-
tion of the associated gene [41, 43, 44]. We investigated 
whether alterations in kidney-specific methylation pat-
terns correspond to changes in gene expression. To 

Fig. 4 Methylation levels regress to the common baseline upon CKD. 
A. Methylation levels for the 253 sites undermethylated in the kidney, 
in individuals with IF < 20 and > 20. B. Methylation levels for the 36 
sites overmethylated in the kidney, in individuals with IF < 20 and > 20. 
C. Site uniqueness, as measured by the distance from other tissues, 
and the corresponding correlation to IF
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achieve this aim, we identified genes associated with the 
identified CpGs (Additional file 1: Table S11) and tested 
for changes in mRNA levels in kidney biopsies of CKD 
patients and controls [45]. Of the 250 genes tested, 210 
(84%) showed a statistically significant (p < 0.05) dif-
ference between CKD and control (Additional file  1: 
Table  S12). Of these, approximately 90% were upregu-
lated in CKD patients (Fig. 5; Additional file 1: Table S12). 
We conclude that methylation at these specific CpG sites 
is correlated with gene expression changes, potentially 
reflecting alterations in local chromatin structure.

Methylation sites negatively correlated with IF are 
linked to oncogenes and developmental genes
We clustered the 36 methylation sites negatively corre-
lated with IF into 15 genomic regions which mapped to 
13 genes (Additional file 1: Table S13). Of these 13 genes, 
seven are known as renal cancer prognostic genes (over-
expression), five play a role in kidney differentiation and 
development, two of which overlap with cancer prog-
nostic genes, and one functions as a tumor suppressor 
[46–52]. Kidney fibrosis is known to correlate with CKD 

and is subsequently with renal cancer [53, 54]. Levels of 
SPAG5, MCF2L, CCDC64, PDLIM4, EMX1, P4HA2, 
VIM and GRAMD1B methylation declined for IF > 20, 
which might indicate oncogenesis in the fibrotic tis-
sue. Interestingly, CKD is a well-established risk factor 
for renal cancer [53, 54]. Although kidney inflammation 
[55] and relative immunodeficiency [56] have been sug-
gested to play a role in CKD-related carcinogenesis, the 
exact molecular link has yet to be definitively established. 
Notably, although CKD results in a generalized inflam-
matory state [57], the risk of cancer in CKD has been 
shown to be limited to the kidney and not other organs 
[55], implying that it likely arises due to kidney-specific 
changes. The described methylation changes, which are 
highly kidney-specific, may thus account for at least some 
of the enhanced cancer risk among CKD patients.

Epigenetic information loss correlates with IF and 
eGFR
The discovery that epigenetic information is lost in a spe-
cific subset of methylation sites opens up the question of 
whether a pathological state can be predicted solely based 

Fig. 5 Genes associated with uniquely methylated sites change in expression in CKD. Expression levels of all (250) genes associated with uniquely 
methylated sites. Gene expression from the Nakagawa CKD Kidney dataset, with the discovery and validation cohorts united
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on methylation data, without any other prior knowledge. 
To answer this question, we implemented a naive infor-
mation loss score. For each of the 289 unique methyla-
tion sites, discovered in the NGDC-CNCB dataset, the 
kidney median and standard deviation were calculated. 
Next, for each individual, the number of sites that devi-
ate from the tissue median toward the levels in other tis-
sues, by at least two standard deviations, was calculated 
(Fig. 6). This score serves as a naive indicator of the loss 
of epigenetic information specific to kidney tissue. The 
information loss score showed a r = 0.82 correlation with 
IF (p <  10–18) and r = − 0.54 with eGFR (p <  10–6). Thus, 
the probability of a pathological condition can be inferred 
solely from the loss of epigenetic information, without 
prior knowledge, except for the affected tissue.

Discussion
Kidney state is captured by specific CpG methylations
Analysis of the kidney methylome revealed that multiple 
kidney pathologies are captured by distinct epigenetic 
clocks and surrogates (Fig. 1; Additional file 3: Figure S1), 
despite the fact that they were developed and tested on 
different tissues for targeting outcomes different than 
kidney state. DNAmB2M and DNAmPAI1 had a par-
ticularly good correlation with IF in males (r = 0.75 and 
0.58, respectively). DNAmB2M clock was built based 
on Beta-2 Microglobulin levels [13]. Increased B2M lev-
els in the blood, and by contrast low levels in the urine, 
are indicative of glomerular dysfunction [58–60], PAI1 
is induced in kidney injury, and has been suggested 

as a causative agent in CKD [61, 62]. The age B2M and 
PAI2 surrogates have a low correlation with age (Supp. 
Tables 2–4). Age-adjusted B2M and PAI2 surrogates sig-
nificantly correlate to eGFR and IF in males and to IF in 
females. By contrast, PhenoAge significantly correlates 
with age, and in females, its strong correlation to eGFR 
is greatly reduced in the age-adjusted version. (Addi-
tional file 1: Tables S2–S4). We interpret these results as 
B2M and PAI2 surrogates capturing some of the biology 
of kidney deterioration, mostly independently of aging. 
By contrast, the correlations generated by PhenoAge are 
predominantly due to its capturing of the natural aging 
process. Of note, DNAmB2M and DNAmPAI1 showed 
relatively low correlation among themselves (r = − 0.30 in 
males and − 0.14 in females), indicating that an improved 
estimator can be generated to facilitate more accurate 
estimation of kidney function across both sexes. Indeed, 
a global analysis identified multiple methylation sites 
that, unlike the methylation clocks, show strong correla-
tions for both sexes. A future increase in the number of 
samples will enable the construction of new epigenetic 
clocks, capturing kidney function decline with greater 
precision.

Next, we identified individual CpG sites that correlated 
with IF and eGFR. As expected, IF and eGFR associated 
CpGs showed a significant overlap (Additional file  3: 
Figure S8). On average, IF resulted in stronger correla-
tions than eGFR both for methylation clocks and specific 
CpGs. This is also expected, as eGFR is an inherently 
noisy measurement that does not capture the kidney state 

Fig. 6 Epigenetic information loss correlates with IF. Epigenetic information loss score for each individual of the GSE50874 dataset (y-axis) 
along with the corresponding IF score (x-axis)
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as accurately as IF [63]. As expected, these results greatly 
overlapped with [34], which generated and used much of 
these data with a similar methodology. By contrast, only 
a small overlap of 21 of 69 CpG sites was observed when 
compared to blood methylation markers of CKD [21]. 
We concluded that the physiological state of the kidney is 
reflected by the methylation levels at multiple sites.

Tissue‑specific methylation patterns are lost 
with functional decline
Of all sites passing our rigorous threshold for tissue-
specificity, 72% have a methylation pattern that cor-
relates with IF (Additional file  1: Table  S11). This is 
likely an underestimation, as the arbitrary cutoff of 10% 
(p < 4 × 10–5) is guided by the relatively small dataset 
used to identify correlated CpGs. The loss of unique epi-
genetic signature with functional decline appears to be 
nearly universal in the kidney. Loss of epigenetic infor-
mation has been suggested to accompany and potentially 
drive cellular aging [64, 65]. These findings support this 
hypothesis, and point out that some of the loss may cor-
relate better to functional decline or “biological age” than 
to chronological age. Moreover, tissue-specific meth-
ylation sites appear to be particularly vulnerable to such 
loss, as most uniquely methylated sites were associated 
with functional decline, compared to much smaller num-
bers among all sites. This exceptionally high occurrence 
leads us to speculate maintenance of these unique sites 
may serve as a hallmark of functional tissue. Future stud-
ies will test if this phenomenon also applies to other tis-
sues, as well as functional decline that does not involve 
fibrosis.

Uniquely methylated sites revert to the average
Interestingly, in every single uniquely methylated site 
tested, the functional decline was accompanied by shift 
in methylation levels toward the levels common in other 
tissues. The most plausible explanation for this would be 
that a default pattern exists in these sites, and a devia-
tion from this default requires active maintenance. Pri-
mary DNA sequence is a key driver of local chromatin 
architecture. The unique methylation patterns could be 
established and maintained by specific DNA motifs. We 
tested for DNA motifs that could explain these patterns. 
While no single motif could explain this unique pattern, 
we have identified several candidates, enriched in these 
sites. De novo motif identification discovered not only 
motifs depleted near unrelated CpG sites, but also motifs 
present in uniquely methylated sites correlating with IF, 
but depleted near non-uniquely methylated sites that do 
correlate to IF.

Two non-exclusive explanations for the loss of epige-
netic information are changes to tissue cell composition 

and changes within the cell populations. For the latter, 
epithelial to mesenchymal transition (EMT) is a pro-
cess in which epithelial cells undergo changes that ena-
ble them to assume a mesenchymal cell phenotype [66]. 
EMT has been associated with fibrosis in the kidney 
[66–69]. Moreover, it has been suggested that changes in 
DNA methylation causally underlie EMT [70]. Deconvo-
lution analysis (Additional file 3: Figure S3) suggests that 
changes in tissue cell composition may contribute to this 
observed change. However, as the methylation profile of 
each underlying cell population is unknown, the relative 
contribution of each process remains unknown. Future 
studies will determine the relative contributions of each 
of these mechanisms to epigenetic information loss in the 
kidney.

While this work focused only on kidney-specific meth-
ylation patterns, we did observe multiple sites that were 
shared with one or a few other tissues and were excluded 
from our lists. It is likely that these findings can be greatly 
expanded, both by testing sites that show a distinct meth-
ylation pattern in other tissues, and by analyzing sites 
that show a distinct methylation pattern in a subset of 
tissues.

Gene expression correlates with changes 
in methylation
DNA methylation can reflect aspects of local chromatin 
structure, and may therefore only correlate with gene 
expression. Alternatively, DNA methylation alters the 
binding for some TF [33], which in turn affects gene 
expression. We identified multiple genes associated with 
CKD-correlated CpG sites that exhibit changes in expres-
sion in CKD (Fig. 5; Additional file 3: Table S12). CKD-
correlated CpG sites are enriched for JunD TF binding 
sites. DNA methylation inhibits JunD binding [71, 72], 
thereby potentially providing a causal mechanism for 
the regulation of gene expression by methylation at these 
sites.

The identified kidney-unique undermethylated sites 
predominantly localize to enhancers. These results 
are in agreement with the known roles of enhancers in 
maintaining tissue identity [73, 74], and the changes in 
enhancer regions of core pro-fibrotic genes observed in 
kidney fibrosis development [22]. These results suggest 
that the loss of open chromatin on these key enhancers 
may be part of the loss of kidney-unique epigenetic sig-
nature and cell identity.

Materials and methods
Demographics of the datasets are available as (Additional 
file 3: Tables S14–S15).
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Epigenetics clocks and CpG site correlations
Epigenetic estimators were calculated using the DNA 
Methylation Age Calculator [14] and the clock founda-
tion web server (dnamage.clockfoundation.org) for the 
85 Illumina HumanMethylation450 BeadChip array 
samples for which full pathological data was available 
(GEO GSE50874). Samples that generated the warn-
ings “meanMethBySample < 0.25” were removed and 
the data was re-analyzed (Additional file  1: Table  S1), 
resulting in a very mild increase in most correlations. 
Next, samples separated into males and females and 
analyzed again (Additional file  1: Table  S3–S4). All 
CpG sites were scored by Pearson correlation (r) to 
eGFR and IF. For each r, t = r√(n-2) / √(1-r2) was calcu-
lated, along with the corresponding p-value. Age and 
sex were were excluded as confounders by testing for 
association with eGFR and IF both the GSE50874 and 
the NGDC-CNCB dataset. Partial correlations were 
calculated using the pg.partial_corr function from the 
pingouin python package.

Identification of uniquely methylated sites
The National Genomics Data Center, China National 
Center for Bioinformation (NGDC-CNCB; [35] data-
set contains tissue-level methylation data across multi-
ple partially annotated individuals. It was used to infer 
tissue-specific methylation levels. Uniquely methylated 
sites were defined as such that the average methyla-
tion level in kidney is lower by at least 0.2 than the 5% 
quantile level of all other samples in the NGDC-CNCB 
dataset, or higher by at least 0.2 than the 95% quantile 
level of all other samples. This distinguished methyla-
tion sites that out of the 28 tissues in the dataset, have 
a unique signature in the kidney, but did not exclude 
samples where a very small minority of samples leaks 
throughout the entire range. Next, CpG sites with less 
than 2000 values were removed. These sites were iden-
tified using custom R and Python scripts.

Motif Enrichment
Motif enrichment analysis for CKD-correlated CpG 
sites was done using MonaLisa [75], using 200  bp of 
sequence from each side of each CpG site. As a con-
trol, CpG sites showing no correlation were inserted 
between the positively and negatively correlated sites. 
De Novo identification of motifs near uniquely meth-
ylated sites was done using Homer [76] on 500  bp of 
sequence from each side of each CpG site. These were 
compared to randomly selected CpG sites, or IF corre-
lated randomly selected CpG sites.

DHS and chromatin state analysis
DHS and chromatin state analysis was performed using 
the eFORGE 2.0 web server (https:// eforge. altiu sinst itute. 
org/), using the “Consolidated Roadmap Epigenomics—
DHS” and the “Consolidated Roadmap Epigenomics—
Chromatin—All 15 state marks,” respectively. Default 
setting of 1 kb window, 1000 background repetition, 0.01 
strict and 0.05 marginal were kept.

Deconvolution analysis
Deconvolution analysis was performed using the EpiS-
CORE web server (www. biosi no. org/ EpiDI SH/) with 
“kidney” reference.

Gene expression analysis
Genes associated with all uniquely methylated sites CpG 
sites were extracted from the HumanMethylation450 
v1.2 Manifest File (Illumina, USA). Gene expression lev-
els in CKD and control kidney biopsies from the Naka-
gawa CKD Kidney dataset [45] were extracted using 
NephroSeq.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13148- 024- 01642-w.

Additional file 1. Supplementary Tables 1–15.

Additional file 2. Supplementary Figure 7.

Additional file 3. Supplementary Figures 1–8.

Acknowledgements
We thank the Bar lab members, Dr. Maayan Gal and Prof. Yosef Gruenbaum for 
critical reading of the manuscript, useful suggestions and comments.

Author contributions
DZB and NS designed the experiments. NS performed the experiments with 
inputs form NM, PB, OP and DZB. NM performed the monaLisa analysis. DZB 
wrote the manuscript with inputs form NS, PB and OP.

Funding
The work was supported by the Israeli Science Foundation (grants 654/20 and 
632/20 to DZB) and the Center for Artificial Intelligence & Data Science in Tel 
Aviv University (TAD).

Availability of data and materials
Data derived from public domain resources. New analysis data are available 
in the supplementary material. Code is available at https:// github. com/ TheBa 
rLab/ Kidney/.

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare no conflict of interest.

Author details
1 Department of Oral Biology, Goldschleger School of Dental Medicine, The 
Faculty of Medical and Health Sciences, Tel Aviv University, 69978 Tel Aviv, 

https://eforge.altiusinstitute.org/
https://eforge.altiusinstitute.org/
http://www.biosino.org/EpiDISH/
https://doi.org/10.1186/s13148-024-01642-w
https://doi.org/10.1186/s13148-024-01642-w
https://github.com/TheBarLab/Kidney/
https://github.com/TheBarLab/Kidney/


Page 12 of 13Sagy et al. Clinical Epigenetics           (2024) 16:27 

Israel. 2 Kidney Research Lab, The Institute of Nephrology and Hypertension, 
Sheba Medical Center, Tel-Hashomer and The Faculty of Medical and Health 
Sciences, Tel-Aviv University, Tel Aviv, Israel. 3 The AI and Data Science Center 
(TAD), Tel Aviv University, 69978 Tel Aviv, Israel. 

Received: 3 September 2023   Accepted: 7 February 2024

References
 1. Fairweather J, Findlay M, Isles C. Clinical Companion in Nephrology. 

Cham: Springer; 2020.
 2. Levin AS, Bilous RW, Coresh J. Chapter 1 Definition and classification of 

CKD. Kidney Int Suppl. 2013;3:19–62.
 3. Musso CG, Álvarez-Gregori J, Jauregui J, Macías-Núñez JF. Glomerular 

filtration rate equations: a comprehensive review. Int Urol Nephrol. 
2016;48:1105–10.

 4. Steubl D, Block M, Herbst V, Nockher WA, Schlumberger W, Satanovskij R, 
et al. Plasma uromodulin correlates with kidney function and identifies 
early stages in chronic kidney disease patients. Medicine. 2016;95: e3011.

 5. Mancilla E, Avila-Casado C, Uribe-Uribe N, Morales-Buenrostro LE, 
Rodríguez F, Vilatoba M, et al. Time-zero renal biopsy in living kidney 
transplantation: a valuable opportunity to correlate predonation clinical 
data with histological abnormalities. Transplantation. 2008;86:1684–8.

 6. Okamoto M, Koshino K, Nobori S, Ushigome H, Okajima H, Urasaki K, 
et al. Analysis of preexisting baseline kidney lesions revealed by biopsy in 
living kidney donors: relationship with clinical parameters at the time of 
donation. Clin Transplant. 2010;24(Suppl 22):27–30.

 7. El Agha E, Kramann R, Schneider RK, Li X, Seeger W, Humphreys 
BD, et al. Mesenchymal stem cells in fibrotic disease. Cell Stem Cell. 
2017;21:166–77.

 8. Brück K, Stel VS, Gambaro G, Hallan S, Völzke H, Ärnlöv J, et al. CKD preva-
lence varies across the European general population. J Am Soc Nephrol. 
2016;27:2135–47.

 9. Kampmann JD, Heaf JG, Mogensen CB, Mickley H, Wolff DL, Brandt F. 
Prevalence and incidence of chronic kidney disease stage 3–5 - results 
from KidDiCo. BMC Nephrol. 2023;24:17.

 10. Hill NR, Fatoba ST, Oke JL, Hirst JA, O’Callaghan CA, Lasserson DS, et al. 
Global prevalence of chronic kidney disease - a systematic review and 
meta-analysis. PLoS ONE. 2016;11: e0158765.

 11. Uthman OA. Global, regional, and national life expectancy, all-cause 
and cause-specific mortality for 249 causes of death, 1980–2015: a 
systematic analysis for the Global Burden of Disease Study 2015. Lancet. 
2016;388(10053):1459–544.

 12. Levin A, Stevens PE. Early detection of CKD: the benefits, limitations and 
effects on prognosis. Nat Rev Nephrol. 2011;7:446–57.

 13. Lu AT, Quach A, Wilson JG, Reiner AP, Aviv A, Raj K, et al. DNA meth-
ylation GrimAge strongly predicts lifespan and healthspan. Aging. 
2019;11:303–27.

 14. Horvath S. DNA methylation age of human tissues and cell types. 
Genome Biol. 2013;14:R115.

 15. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, et al. 
Genome-wide methylation profiles reveal quantitative views of human 
aging rates. Mol Cell. 2013;49:359–67.

 16. Gluck C, Qiu C, Han SY, Palmer M, Park J, Ko Y-A, et al. Kidney cytosine 
methylation changes improve renal function decline estimation in 
patients with diabetic kidney disease. Nat Commun. 2019;10:2461.

 17. Al-Dabet MM, Shahzad K, Elwakiel A, Sulaj A, Kopf S, Bock F, et al. Reversal 
of the renal hyperglycemic memory in diabetic kidney disease by target-
ing sustained tubular p21 expression. Nat Commun. 2022;13:5062.

 18. Neytchev O, Erlandsson H, Witasp A, Nordfors L, Qureshi AR, Iseri K, et al. 
Epigenetic clocks indicate that kidney transplantation and not dialysis 
mitigate the effects of renal ageing. J Intern Med. 2023. https:// doi. org/ 
10. 1111/ joim. 13724.

 19. Dritsoula A, Kislikova M, Oomatia A, Webster AP, Beck S, Ponticos M, et al. 
Epigenome-wide methylation profile of chronic kidney disease-derived 
arterial DNA uncovers novel pathways in disease-associated cardiovascu-
lar pathology. Epigenetics. 2021;16:718–28.

 20. Rysz J, Franczyk B, Rysz-Górzyńska M, Gluba-Brzózka A. Are Alterations 
in DNA Methylation Related to CKD Development? Int J Mol Sci. 2022. 
https:// doi. org/ 10. 3390/ ijms2 31371 08.

 21. Schlosser P, Tin A, Matias-Garcia PR, Thio CHL, Joehanes R, Liu H, et al. 
Meta-analyses identify DNA methylation associated with kidney function 
and damage. Nat Commun. 2021;12:7174.

 22. Ko Y-A, Mohtat D, Suzuki M, Park ASD, Izquierdo MC, Han SY, et al. Cyto-
sine methylation changes in enhancer regions of core pro-fibrotic genes 
characterize kidney fibrosis development. Genome Biol. 2013;14:R108.

 23. Chu AY, Tin A, Schlosser P, Ko Y-A, Qiu C, Yao C, et al. Epigenome-wide 
association studies identify DNA methylation associated with kidney 
function. Nat Commun. 2017;8:1286.

 24. Sheng X, Qiu C, Liu H, Gluck C, Hsu JY, He J, et al. Systematic integrated 
analysis of genetic and epigenetic variation in diabetic kidney disease. 
Proc Natl Acad Sci U S A. 2020;117:29013–24.

 25. Wing MR, Devaney JM, Joffe MM, Xie D, Feldman HI, Dominic EA, et al. 
DNA methylation profile associated with rapid decline in kidney function: 
findings from the CRIC study. Nephrol Dial Transplant. 2014;29:864–72.

 26. Sapienza C, Lee J, Powell J, Erinle O, Yafai F, Reichert J, et al. DNA methyla-
tion profiling identifies epigenetic differences between diabetes patients 
with ESRD and diabetes patients without nephropathy. Epigenetics. 
2011;6:20–8.

 27. Smyth LJ, McKay GJ, Maxwell AP, McKnight AJ. DNA hypermethylation 
and DNA hypomethylation is present at different loci in chronic kidney 
disease. Epigenetics. 2014;9:366–76.

 28. Rakyan VK, Down TA, Balding DJ, Beck S. Epigenome-wide association 
studies for common human diseases. Nat Rev Genet. 2011;12:529–41.

 29. Breeze CE, Batorsky A, Lee MK, Szeto MD, Xu X, McCartney DL, et al. 
Epigenome-wide association study of kidney function identifies trans-
ethnic and ethnic-specific loci. Genome Med. 2021;13:74.

 30. Kangaspeska S, Stride B, Métivier R, Polycarpou-Schwarz M, Ibberson D, 
Carmouche RP, et al. Transient cyclical methylation of promoter DNA. 
Nature. 2008;452:112–5.

 31. Métivier R, Gallais R, Tiffoche C, Le Péron C, Jurkowska RZ, Carmouche 
RP, et al. Cyclical DNA methylation of a transcriptionally active promoter. 
Nature. 2008;452:45–50.

 32. Bonder MJ, Luijk R, Zhernakova DV, Moed M, Deelen P, Vermaat M, et al. 
Disease variants alter transcription factor levels and methylation of their 
binding sites. Nat Genet. 2017;49:131–8.

 33. Héberlé É, Bardet AF. Sensitivity of transcription factors to DNA methyla-
tion. Essays Biochem. 2019;63:727–41.

 34. Bontha SV, Maluf DG, Archer KJ, Dumur CI, Dozmorov MG, King AL, et al. 
Effects of DNA methylation on progression to interstitial fibrosis and 
tubular atrophy in renal allograft biopsies: a multi-omics approach. Am J 
Transplant. 2017;17:3060–75.

 35. Xiong Z, Li M, Ma Y, Li R, Bao Y. GMQN: a reference-based method for 
correcting batch effects and probe bias in humanmethylation beadchip. 
Front Genet. 2021;12: 810985.

 36. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis 
of large gene lists using DAVID bioinformatics resources. Nat Protoc. 
2009;4:44–57.

 37. Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, et al. 
The human colon cancer methylome shows similar hypo- and hyper-
methylation at conserved tissue-specific CpG island shores. Nat Genet. 
2009;41:178–86.

 38. Davies MN, Volta M, Pidsley R, Lunnon K, Dixit A, Lovestone S, et al. 
Functional annotation of the human brain methylome identifies tissue-
specific epigenetic variation across brain and blood. Genome Biol. 
2012;13:R43.

 39. Sagy N, Chang C, Bar DZ. Epigenetic information loss is a common fea-
ture of multiple diseases and aging [Internet]. bioRxiv. 2023 [cited 2023 
Nov 27]. p. 2023.05.07.539727. Available from: https://www.biorxiv.org/
content/https:// doi. org/ 10. 1101/ 2023. 05. 07. 53972 7v1. abstr act

 40. Zhu T, Teschendorff AE. Cell-Type Deconvolution of Bulk DNA Methyla-
tion Data with EpiSCORE. Methods Mol Biol. 2023;2629:23–42.

 41. Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsy-
chopharmacology. 2013;38:23–38.

 42. Breeze CE, Reynolds AP, van Dongen J, Dunham I, Lazar J, Neph S, et al. 
eFORGE v20: updated analysis of cell type-specific signal in epigenomic 
data. Bioinformatics. 2019;35:4767–9.

https://doi.org/10.1111/joim.13724
https://doi.org/10.1111/joim.13724
https://doi.org/10.3390/ijms23137108
https://doi.org/10.1101/2023.05.07.539727v1.abstract


Page 13 of 13Sagy et al. Clinical Epigenetics           (2024) 16:27  

 43. Dhar GA, Saha S, Mitra P, Nag CR. DNA methylation and regulation of 
gene expression: Guardian of our health. Nucleus. 2021;64:259–70.

 44. Banovich NE, Lan X, McVicker G, van de Geijn B, Degner JF, Blischak JD, 
et al. Methylation QTLs are associated with coordinated changes in 
transcription factor binding, histone modifications, and gene expression 
levels. PLoS Genet. 2014;10: e1004663.

 45. Nakagawa S, Nishihara K, Miyata H, Shinke H, Tomita E, Kajiwara M, et al. 
Molecular markers of tubulointerstitial fibrosis and tubular cell damage in 
patients with chronic kidney disease. PLoS ONE. 2015;10: e0136994.

 46. Kim P, Park J, Lee D-J, Mizuno S, Shinohara M, Hong CP, et al. Mast4 deter-
mines the cell fate of MSCs for bone and cartilage development. Nat 
Commun. 2022;13:1–16.

 47. Kravchenko DS, Ivanova AE, Podshivalova ES, Chumakov SP. PDLIM4/
RIL-mediated regulation of Src and malignant properties of breast cancer 
cells. Oncotarget. 2020;11:22–30.

 48. Morales EE, Handa N, Drummond BE, Chambers JM, Marra AN, Addiego 
A, et al. Homeogene emx1 is required for nephron distal segment devel-
opment in zebrafish. Sci Rep. 2018;8:1–17.

 49. Dressler GR, Woolf AS. Pax2 in development and renal disease. Int J Dev 
Biol. 1999;43:463–8.

 50. Matsuda J, Maier M, Aoudjit L, Baldwin C, Takano T. ARHGEF7 (-PIX) Is 
Required for the Maintenance of Podocyte Architecture and Glomerular 
Function. J Am Soc Nephrol. 2020;31:996–1008.

 51. Kersten FF, van Wijk E, Hetterschijt L, Bauβ K, Peters TA, Aslanyan MG, et al. 
The mitotic spindle protein SPAG5/Astrin connects to the Usher protein 
network postmitotically. Cilia. 2012;1:2.

 52. Cirio MC, Hui Z, Haldin CE, Cosentino CC, Stuckenholz C, Chen X, et al. 
Lhx1 is required for specification of the renal progenitor cell field. PLoS 
ONE. 2011;6: e18858.

 53. Lowrance WT, Ordoñez J, Udaltsova N, Russo P, Go AS. CKD and the risk of 
incident cancer. J Am Soc Nephrol. 2014;25:2327–34.

 54. Christensson A, Savage C, Sjoberg DD, Cronin AM, O’Brien MF, Lowrance 
W, et al. Association of cancer with moderately impaired renal function at 
baseline in a large, representative, population-based cohort followed for 
up to 30 years. Int J Cancer. 2013;133:1452–8.

 55. Silverstein DM. Inflammation in chronic kidney disease: role in the 
progression of renal and cardiovascular disease. Pediatr Nephrol. 
2009;24:1445–52.

 56. Giacchino F, Alloatti S, Quarello F, Bosticardo GM, Giraudo G, Piccoli G. 
The immunological state in chronic renal insufficiency. Int J Artif Organs. 
1982;5:237–42.

 57. Shlipak MG, Fried LF, Crump C, Bleyer AJ, Manolio TA, Tracy RP, et al. Eleva-
tions of inflammatory and procoagulant biomarkers in elderly persons 
with renal insufficiency. Circulation. 2003;107:87–92.

 58. Argyropoulos CP, Chen SS, Ng Y-H, Roumelioti M-E, Shaffi K, Singh PP, 
et al. Rediscovering beta-2 microglobulin as a biomarker across the 
spectrum of kidney diseases. Front Med. 2017;4:73.

 59. Sedighi O, Abediankenari S, Omranifar B. Association between plasma 
Beta-2 microglobulin level and cardiac performance in patients with 
chronic kidney disease. Nephrourol Mon. 2015;7: e23563.

 60. Zeng X, Hossain D, Bostwick DG, Herrera GA, Ballester B, Zhang PL. Uri-
nary β2-microglobulin is a sensitive indicator for renal tubular injury. SAJ 
Case Rep [Internet]. 2014;1(1):103.

 61. Gifford CC, Lian F, Tang J, Costello A, Goldschmeding R, Samarakoon R, 
et al. PAI-1 induction during kidney injury promotes fibrotic epithelial 
dysfunction via deregulation of klotho, p53, and TGF-β1-receptor signal-
ing. FASEB J. 2021;35: e21725.

 62. Oda T, Jung YO, Kim HS, Cai X, López-Guisa JM, Ikeda Y, et al. PAI-1 defi-
ciency attenuates the fibrogenic response to ureteral obstruction. Kidney 
Int. 2001;60:587–96.

 63. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, 
et al. A new equation to estimate glomerular filtration rate. Ann Intern 
Med. 2009;150:604–12.

 64. Lu Y, Brommer B, Tian X, Krishnan A, Meer M, Wang C, et al. Reprogram-
ming to recover youthful epigenetic information and restore vision. 
Nature. 2020;588:124–9.

 65. Imai S, Kitano H. Heterochromatin islands and their dynamic reorgani-
zation: a hypothesis for three distinctive features of cellular aging. Exp 
Gerontol. 1998;33:555–70.

 66. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J 
Clin Invest. 2009;119:1420–8.

 67. Roeder SS, Stefanska A, Eng DG, Kaverina N, Sunseri MW, McNicholas BA, 
et al. Changes in glomerular parietal epithelial cells in mouse kidneys 
with advanced age. Am J Physiol Renal Physiol. 2015;309:F164–78.

 68. Zeisberg M, Yang C, Martino M, Duncan MB, Rieder F, Tanjore H, et al. 
Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mes-
enchymal transition. J Biol Chem. 2007;282:23337–47.

 69. Kim KK, Kugler MC, Wolters PJ, Robillard L, Galvez MG, Brumwell AN, et al. 
Alveolar epithelial cell mesenchymal transition develops in vivo during 
pulmonary fibrosis and is regulated by the extracellular matrix. Proc Natl 
Acad Sci U S A. 2006;103:13180–5.

 70. Galle E, Thienpont B, Cappuyns S, Venken T, Busschaert P, Van Haele M, 
et al. DNA methylation-driven EMT is a common mechanism of resistance 
to various therapeutic agents in cancer. Clin Epigenetics. 2020;12:27.

 71. Mann IK, Chatterjee R, Zhao J, He X, Weirauch MT, Hughes TR, et al. CG 
methylated microarrays identify a novel methylated sequence bound 
by the CEBPB|ATF4 heterodimer that is active in vivo. Genome Res. 
2013;23:988–97.

 72. Spruijt CG, Gnerlich F, Smits AH, Pfaffeneder T, Jansen PWTC, Bauer C, 
et al. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized 
derivatives. Cell. 2013;152:1146–59.

 73. Parker SCJ, Stitzel ML, Taylor DL, Orozco JM, Erdos MR, Akiyama JA, et al. 
Chromatin stretch enhancer states drive cell-specific gene regula-
tion and harbor human disease risk variants. Proc Natl Acad Sci U S A. 
2013;110:17921–6.

 74. Ko JY, Oh S, Yoo KH. Functional Enhancers As Master Regulators of 
Tissue-Specific Gene Regulation and Cancer Development. Mol Cells. 
2017;40:169–77.

 75. Machlab D, Burger L, Soneson C, Rijli FM, Schübeler D, Stadler MB. monaL-
isa [Internet]. Bioconductor, Bioinformatics. 2021;38(9):2624–5.

 76. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple 
combinations of lineage-determining transcription factors prime cis-
regulatory elements required for macrophage and B cell identities. Mol 
Cell. 2010;38:576–89.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Kidney-specific methylation patterns correlate with kidney function and are lost upon kidney disease progression
	Abstract 
	Background 
	Results 
	Conclusions 
	Significance statement 

	Introduction
	Chronic kidney disease (CKD)

	DNA methylation correlates with lifespan, healthspan and CKD
	Changes in DNA methylation alter transcription-factor binding
	Results
	Specific epigenetic clocks correlate with eGFR and IF

	Multiple CpG sites show strong correlation to eGFR and IF
	CKD-correlated CpG sites are enriched for TF binding sites
	Kidney-specific methylation patterns are lost with kidney disease progression
	Functional decline is accompanied by a drift toward the common methylation pattern
	Characterization of kidney-specific methylation sites
	Expression change of genes associated with kidney-specific methylation patterns
	Methylation sites negatively correlated with IF are linked to oncogenes and developmental genes
	Epigenetic information loss correlates with IF and eGFR
	Discussion
	Kidney state is captured by specific CpG methylations

	Tissue-specific methylation patterns are lost with functional decline
	Uniquely methylated sites revert to the average
	Gene expression correlates with changes in methylation
	Materials and methods
	Epigenetics clocks and CpG site correlations
	Identification of uniquely methylated sites
	Motif Enrichment
	DHS and chromatin state analysis
	Deconvolution analysis
	Gene expression analysis
	Acknowledgements
	References


