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Abstract 

Background Whole-genome methylation sequencing of cfDNA is not cost-effective for tumor detection. Here, we 
introduce reduced representative methylome profiling (RRMP), which employs restriction enzyme for depletion of AT-
rich sequence to achieve enrichment and deep sequencing of CG-rich sequences.

Methods We first verified the ability of RRMP to enrich CG-rich sequences using tumor cell genomic DNA and ana-
lyzed differential methylation regions between tumor cells and normal whole blood cells. We then analyzed cfDNA 
from 29 breast cancer patients and 27 non-breast cancer individuals to detect breast cancer by building machine 
learning models.

Results RRMP captured 81.9% CpG islands and 75.2% gene promoters when sequenced to 10 billion base pairs, 
with an enrichment efficiency being comparable to RRBS. RRMP allowed us to assess DNA methylation changes 
between tumor cells and whole blood cells. Applying our approach to cfDNA from 29 breast cancer patients and 27 
non-breast cancer individuals, we developed machine learning models that could discriminate between breast can-
cer and non-breast cancer controls (AUC = 0.85), suggesting possibilities for truly non-invasive cancer detection.

Conclusions We developed a new method to achieve reduced representative methylome profiling of cell-free DNA 
for tumor detection.

Introduction
Cell-free DNA (cfDNA) in plasma is primarily derived 
from the apoptosis or necrosis of cells in a variety of tis-
sues throughout the body [1, 2]. Circulating tumor DNA 
(ctDNA) from tumor cells is used as a biomarker for 

liquid biopsy testing approaches for tumor detection [3–
5]. Several studies have identified specific ctDNA features 
that may be useful for tumor detection by cfDNA profil-
ing, such as mutations, DNA methylation, fragmentation, 
copy number aberrations, and end motifs [6–8]. In par-
ticular, methylation modifications in ctDNA are widely 
used as biomarkers for tumor detection [9, 10].

The discovery of ctDNA markers provides an oppor-
tunity for tumor liquid biopsy, but there are still many 
challenges. First, the low level of ctDNA in plasma, 
0.1% or even less in the early stages of tumor develop-
ment, is a technical challenge for early cancer detection 
[11]. Second, tumors of different types, subtypes, or eti-
ologies have different patterns of methylation aberra-
tion. This provides an opportunity for tumor-of-origin 
localization, but also poses a challenge for marker selec-
tion. An increase in the depth of coverage and number 
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of methylation markers may improve the sensitivity of 
ctDNA detection and the accuracy of tumor-of-origin 
localization [12]. Targeted capture allows deep sequenc-
ing of the custom target region, but only a portion of the 
ctDNA can be analyzed, which may lead to false negative 
results.

The discovery or selection of methylation mark-
ers requires comprehensive profiling DNA methyla-
tion. However, CpG sparse regions out of CpG islands 
consume most sequencing capacity of whole-genome 
bisulfite sequencing (WGBS) [13, 14]. Reduced repre-
sentative bisulfite sequencing (RRBS) enriches CpG-
dense regions by restriction digest, requiring reduced 
sequencing throughput [15]. But RRBS needs relatively 
large amounts of genomic DNA input and is not suit-
able for analyzing low amounts of highly fragmented 
cfDNA [16]. Extended-representation bisulfite sequenc-
ing (XRBS) expands coverage over gene regulatory ele-
ments and is compatible with low-amount genomic DNA 
samples, but it has not been used to analyze cfDNA [17]. 
Here, we present a versatile strategy for reduced repre-
sentative methylome profiling (RRMP), which is com-
patible with both genomic DNA and highly fragmented 
cfDNA.

Materials and methods
Cells
K562 (RRID:CVCL_0004), Calu-1 (CVCL_0608), NCI-
H460 (CVCL_0459), Hep 3B2.1-7 (RRID:CVCL_0326), 
Li-7 (CVCL_3840), Caco-2 (CVCL_0025), HT29 (CVCL_
A8EZ), BT474 (CVCL_0179), BT-549 (CVCL_1092) and 
HGC-27 (CVCL_1279) were obtained from NICR (The 
Chinese National Infrastructure of Cell Line Resource). 
Cell line authentication was performed using STR pro-
filing kit (HUMDNATYPING SYSTEM, BGI). Genomic 
DNA was purified with DNeasy Blood & Tissue Kit 
(Qiagen).

Human participants and sample acquisition
Plasma samples were collected from female patients 
with BC or benign disease before any treatment at the 
First Affiliated Hospital, Xiamen University, between 
December 2021 and December 2022. The present study 
was performed under the Helsinki Declaration and was 
approved by the Ethics Committee of the First Affiliated 
Hospital, Xiamen University (reference number: XMYY-
2021KYSB209). Informed consent was obtained from all 
participants or their families.

Blood sample processing and cfDNA purification
cfDNA samples were processed by the following method. 
Peripheral blood was collected from all volunteers using 
cfDNA Blood Collection Tube (Zhixuan Biotech). Plasma 

was separated by centrifugation at 1600 g for 10 min and 
transferred to microcentrifuge tubes. After then, centrif-
ugation was done at 16,000 g for 10 min to remove cellu-
lar debris. The supernatant was divided into 2-ml aliquots 
and stored at − 80  °C until the time of DNA extraction. 
cfDNA was extracted from 2-ml plasma for each partici-
pant using Plasma Cell-Free DNA Extraction Kit (Con-
cert). cfDNA concentration was measured using Qubit 
dsDNA High Sensitivity Assay Kit (Thermo Fisher).

RRMP library preparation
The process for RRMP library preparation is shown in 
Fig. 1a. First, EM-seq library was prepared as described 
previously [18]. In brief, mechanically fragmented cell 
genomic DNA or cfDNA was treated with VAHTS Uni-
versal DNA library Prep Kit (New England BioLabs) 
for end-repair, A-tailing, and ligation of EM-seq adap-
tor (New England BioLabs). The ligated sample was 
methyl-converted with EM-seq Conversion Module 
(New England BioLabs) per the manufacturer’s protocol. 
Methyl-converted DNA was purified and amplified using 
NEBNext Unique Dual Index Primers (New England 
BioLabs) and KAPA HiFi HotStart Uracil + ReadyMix 
(KAPA biosystems). No more than 15 EM-seq librar-
ies (150  ng per sample) were pooled together and sub-
jected to restriction digest with MseI or a combination 
of MluCI, MseI, SspI, PsiI with incubation time of more 
than 30 min. Following purification, DNA products were 
amplified for three cycles using KAPA HiFi HotStart Ura-
cil + ReadyMix (KAPA biosystems). To achieve complete 
digestion, the digestion and amplification were repeated 
twice.

Next‑generation sequencing and data processing
All RRMP and EM-seq libraries were sequenced using 
the Illumina Novaseq 6000 platform by Mingma Tech-
nologies Inc (Shanghai). Paired-end data were generated 
using 2 × 150 sequencing cycles, as detailed in Addi-
tional file  1: Table  S1. The raw sequencing FASTQ files 
were processed using Fastp (0.23.2) to trim Illumina-
specific adapters with default parameters and low-qual-
ity sequences with parameters of -u 20 and -q 20 [19]. 
Mapping to the human reference genome hg19 of the 
processed sequencing reads was performed using the 
bismark (0.23.0) [20]. Incomplete converted reads with 
more than 3 CHs were removed using filter_non_con-
version (bismark). Average DNA methylation values and 
coverage within CpG islands, promoters (1 kb upstream 
and 500 bp downstream of all transcription start sites 
of protein-coding genes), and genomic 100-kb windows 
were used for many analyses.
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Differentially methylated regions analysis
RRMP libraries from 9 cancer cell lines and 3 whole 
blood cell (WBC) samples from healthy donors were 
used to analyze differentially methylated regions 
(DMRs) using dmrfinder [21]. Genomic regions 
(≤ 300 bp) detected at least 10 × coverage in all datasets 
were retained for further analysis. Average methyla-
tion beta value was calculated for each type of samples 
and used for DMR analysis. We obtained DMRs at 
p < 0.0000001, Δ beta value > 0.5 for each type of tumor 
cell lines compared to WBC samples; DMRs at p < 0.05, 
Δ beta value > 0.2 for all types of tumor cell lines com-
pared to WBC samples; and DMRs at p < 0.05, Δ beta 
value > 0.33 for each type of tumor cell lines compared 
to WBC samples and other type of tumor cell lines.

RRMP libraries of NCI-H460, HEP3B, HT29, and 
BT549 were uses to parse differentially methylated pro-
moters. BEDTools intersect and BEDTools groupby were 
used to analyze the methylation values of the upstream 
and downstream 4  kb regions of TSS and then used 
methylkit to obtain the methylation regions specific to 
each cell (q value < 0.01, Δ beta > 0.5) [22, 23].

Correlation analysis of cell‑specific DNA methylation 
with histone modification
H3K4me3, H3K27ac ChIP-Seq datasets and control 
datasets for HT29 and NCI-H460 were downloaded 
from SRA (Additional file  1: Table  S2). macs2 callpeak 
was used to obtain H3K4me3 and H3K27ac peak files 
of two cells from alignments results to human genome 

Fig. 1 A reduced representative methylome profiling method. a Schematic representation of RRMP. b Genome plot for the GBGT1 gene 
locus compares read coverage between 1-cut RRMP (K562) and public WGBS (K562) and RRBS (SW1353) datasets. Boxes represent reads, 
and unmethylated (blue) and methylated (red) CpGs are indicated. CpG islands are indicated. c Genome plot for the GBGT1 gene locus shows 
distribution of 1-cut RRMP reads and MseI targeted sites in both Watson and Crick strand. d, e Plot shows the average coverage depth as a function 
of distance between the upstream and downstream enzyme recognition sites in both Watson (d) and Crick (e) strand
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(q value < 0.01) [24]. Methylation levels of 4  kb regions 
upstream and downstream of these peaks were calculated 
using RRMP data and the methylkit tool to pick regions 
with differential methylation (q value < 0.01, Δ beta > 0.5). 
The number of DMRs with H3K4me3 and H3K27ac 
peaks in each cell was used to compute Fisher exact test P 
values to determine correlation.

Development of BC detection model
Autosomal CpGs covering more than 100 × in more than 
80% of the samples were included for further analysis. 
Samples with more than 20% of these sites covered less 
than 100 × were excluded. CpGs in the 2 kb upstream and 
downstream of TSS with variance ≥ 0.009 were included 
for feature selection and construction of breast cancer 
detection model using a supervised machine learning 
approach with leave-one-out (LOO) cross-validation 
[25, 26]. The logistic regression output for each validated 
sample was the prediction tumor score.

Results
A versatile method for reduced representative methylome 
profiling
Bisulfite treatment of DNA converts unmethylated C 
into T without changing 5mC and 5hmC, resulting in a 
decrease in the CG content. We reasoned that it is pos-
sible to enrich CpG dense regions by eliminating AT-rich 
fragments following C to T conversion. In silico analysis 
of a WGBS data from SRA showed that the removal of 
AT-rich reads could significantly increase the CG con-
tent of the remaining reads and the proportions of the 
remaining reads mapping to CpG islands and promoters, 
the enrichment effect of which was comparable to that of 
RRBS (Additional file 2: Fig. S1). Therefore, we designed 
RRMP method by using DNA endonucleases target-
ing AT-rich sequences to treat C-to-T converted library, 
which is compatible with both genomic DNA and highly 
fragmented cfDNA (Fig. 1a).

We prepared an EM-seq library from 30  ng of frag-
mented genomic DNA from K562 cells [27]. The DNA 
library was digested using a single enzyme (MseI) and 
a combination of four enzymes (MseI, MluCI, SspI, and 
PsiI) to generate 1-cut and 4-cut RRMP libraries, respec-
tively. Approximately 75 million reads were sequenced 
for each RRMP library (Additional file 1: Table S1). Fig-
ure 1b and Additional file 2: Figure S2 show representa-
tive regions of the RRMP datasets compared to published 
data. Similar to the RRBS, the reads of the RRMP data-
sets were enriched in the CpG island regions, with deple-
tion of reads at the vicinity of cut sites (Fig.  1c). The 
coverage depth of genomic regions with sparse cut sites is 
higher than those with dense cut sites, indicating efficient 
genome-wide elimination of AT-rich reads (Fig. 1d, e).

RRMP enhanced coverage over CpG islands and promoters
We further evaluated RRMP coverage in CpG islands and 
promoter regions, in comparison with WGBS, RRBS, and 
XRBS. Coverage was normalized for each method via 
downsampling. An element of CpG island or promoter 
was considered to be covered if CpGs in this element 
accumulated to ≥ 100-fold coverage [17]. With these cri-
teria, RRMP captured more CpG islands and promot-
ers than WGBS at lower sequencing throughput. When 
downsampled to 10 billion base pairs of sequencing data, 
1-cut RRMP captured 22,797 CpG islands and 13,442 
promoters, 5.0 and 2.9 times the coverage of WGBS 
(Fig. 2a, b). RRMP showed similar enrichment efficiency 
to RRBS and XRBS. When sequenced to saturation (~ 23 
billion base pairs), 1cut-RRMP captured 81.9% CpG 
islands and 75.2% gene promoters (compared to 83.1% 
and 81.7% for RRBS, Fig.  2a, b). Similarly, 4-cut RRMP 
captured about 19,332 CpG islands and 10,810 promot-
ers at sequencing data of 10 billion base pairs, 4.3 and 
2.3 times the coverage of WGBS (Additional file  2: Fig 
S3 a-b). At lower sequencing throughput, RRMP cap-
tured more CpGs in the CpG islands and promoters with 
higher coverage depth, comparing to WGBS (Fig. 2c and 
Additional file 2: Fig S3 c-e).

High concordance in DNA methylation values of indi-
vidual CpGs was confirmed between two RRMP datasets 
and between 1cut RRMP and two public datasets of K562 
cells (Fig.  2d–e). RRMP detected global hypomethyla-
tion in K562 cells, consistent with previous study (Addi-
tional file  2: Fig S3f ) [17]. We overlaid RRMP data and 
published data for histone modifications of K562 cells. 
As expected, DNA methylation was negatively corre-
lated with histone H3K4me3 (r = − 0.54), which marks 
active and poised promoters and histone H3K27Ac 
mark (r = − 0.36), which is deposited at active enhancers 
(Fig. 2g, h) [28–30]. Most H3K4me3 (94%) and H3K27Ac 
(96%) with signal > 1 are found at regions with DNA 
hypomethylation (beta value < 10%).

RRMP detects tumor cell specific DNA methylation
We next used RRMP to compare methylation patterns 
across tumor cell lines. We generated 4-cut RRMP librar-
ies using cell lines from lung cancer, liver cancer, colorec-
tal cancer, breast cancer, gastric cancer, and three WBC 
samples from healthy donors and got average 50 million 
paired-end reads per library (Additional file 1: Table S1). 
RRMP detected global hypomethylation in Hep-3B cells 
(average beta value = 0.42) and global hypermethylation 
in other samples (average beta value = 0.50–0.62, Fig. 3a). 
The global methylation levels varied significantly among 
tumor cells (r = 0.39–0.77), while these were highly con-
sistent among three whole blood samples (r = 0.92–0.93, 
Additional file 2: Fig S4a).
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We next used RRMP data to analyze DMRs compar-
ing tumor cells and whole blood cells (Additional file 2: 
Fig S4b and Additional file  1: Table  S3-S7). We identi-
fied 6199 specific hypermethylated regions and 1645 

hypomethylated regions in tumor cell lines compared 
to whole blood cells, which are expected to be biomark-
ers for the detection of multiple cancer types (Fig.  3b 
and Additional file  1: Table  S8-S9). We also analyzed 

Fig. 2 RRMP analysis of methylation in CpG island and promoters. a, b Plots show the number of CpG islands (a) or promoters (b) with at least 
100-fold combined coverage as a function of sequencing depth (x axis) for 1-cut RRMP (K562), XRBS (K562), WGBS (K562), and RRBS (SW1353). 
Enrichment for functional elements at a uniform sequencing depth of 10 billion base pairs is indicated. Vertical gray line indicates break in x-axis 
scale. c, Plot shows coverage depth of CpGs in WGBS, XRBS, 1-cut RRMP, and 4-cut RRMP at a uniform sequencing depth of 10 billion base pairs. 
d–f Heat maps compare individual CpG methylation values between 1-cut RRMP and WGBS (d, r = 0.88), 1 cut-RRMP and XRBS (e, r = 0.85), 1 
cut-RRMP and 4-cut RRMP (f, r = 0.98) for K562 cells. Analysis limited to CpGs with at least 20-fold coverage (n = 128,501, 160,804 and 1,659,714 
CpGs). Percentages indicate the fraction of CpGs that differed between conditions (difference in beta values > 0.5). g, h Heatmaps compare average 
DNA methylation values from 1-cut RRMP datasets with signal for H3K4me3 (g) and H3K27ac (h) for K562 cells. Percentages indicate the fraction 
of hypermethylated (beta value >  = 10%) and hypomethylated(beta value < 10%) regions with Chip-seq signal > 1
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tumor-specific DMR for potential markers of tissue ori-
gin (Fig. 3c and Additional file 1: Table S10-S11). RRMP 
data analysis of four tumor cells yielded 2776 cell-specific 
hypermethylated promoters and 3027 cell-specific hypo-
methylated promoters (Fig. 3d, e).

Next, we investigated whether cell-specific methylation 
measured by RRMP could predict the status of histone 

modification in different cell lines. We aggregated 34,033 
regions with H3K4me3 peak from HT29 and NCI-H460 
cells covered in the RRMP data set. Of these peaks, 
2.1% were specifically hypomethylated in HT29, and 
6.6% were specifically hypomethylated in NCI-H460 
cells, whereas the remaining 91.3% (others) were pre-
dominantly hypomethylated in both cell lines (Fig.  3f ). 

Fig. 3 Analysis of tumor-related DNA methylation using RRMP. a Heat map shows genome-wide DNA methylation in 100-kb windows across 9 
tumor cell lines and 3 WBC samples. Windows are sorted by decreasing DNA methylation for each cell line. Average methylation value for each 
sample is indicated below. b Heat map depicts hypermethylated and hypomethylated regions in tumor cells compared to WBC samples. c Heat 
map depicts hypermethylated and hypomethylated regions in each type of tumor cells compared to WBC samples and other tumor cell lines. d, 
e Heat map depicts 8-kb genomic regions (rows, n = 3972 promoters) centered at transcription start sites and divided into 100 equally sized bins. 
Panels show average methylation from 1000-cell XRBS profiles for the indicated cell types. Promoters (rows, ≥ 25-fold combined coverage in every 
cell line) are grouped by the cell line in which they are specifically hypermethylated (d) or hypomethylated (e). Hypomethylated promoters specific 
to K562 cells are downsampled for visualization. A full list of differentially methylated promoters is provided in Additional file 1: Table S3. f Heat 
map depicts 8-kb regions (rows, n = 15,202 regions) centered on H3K4me3 peaks identified in NCI-H460 and HT29 ChIP-seq datasets. Rows are 
ordered by DNA methylation difference between both cell lines. Panels show average methylation from 4-cut RRMP profiles and H3K4me3 signals 
for NCI-H460 and HT29. Cell-line-specific DNA hypomethylation correlates with H3K4me3 signal. Peaks not specifically hypomethylated in either cell 
line (‘Others’) were downsampled for visualization
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Of regions specifically hypomethylated in HT29, 92.6% 
contained the H3K4me3 peak in HT29 cell, compared 
to 54.4% in NCI-H460 (p < 0.0001, Fisher’s exact test; 
Fig. 3f ). Of regions specifically hypomethylated in NCI-
H460, 97.8% contained the H3K4me3 peak in NCI-H460, 
compared to 23.8% in HT29 (p < 0.0001; Fig. 3f ). Hence, 
hypomethylation was associated with H3K4me3, sug-
gesting that RRMP can be used to analyze the cell spe-
cific histone modifications. RRMP data were also used 
to analyze the negative correlation between methylation 
signals and enhancer signals, although RRMP coverage at 
the H3K27ac peaks was low (Additional file 2: Fig S5).

Breast cancer detection using RRMP of cfDNA
We further investigated whether RRMP could be used 
to analyze cfDNA sample. We performed RRMP analy-
sis of plasma samples from breast cancer patients (BC, 
n = 29) and non-breast cancer individuals (NBC, n = 27, 
Additional file  1: Table  S1 and S12). The libraries were 
sequenced by an average of 75 million reads. To evaluate 
the enrichment effect of RRMP on cfDNA samples, we 
also sequenced the EM-seq library of two cfDNA sam-
ples (NBC16 and BC11), generating 194 and 203 million 
reads, respectively. Here, the library derived from one 
sample can be used for both genome-wide methylation 
sequencing and reduced representative methylome pro-
filing, suggesting that RRMP facilitates sample re-use for 
multiple analyses. Compared to EM-seq datasets, RRMP 
highly enriched CpG island and promoter sequences and 
efficiently captured CpGs in CpG islands and promoters 
with higher coverage (Fig. 4a-b and Additional file 2: Fig 
S6 a-d). The methylation analysis was highly consistent 
between RRMP and EM-seq (Fig. 4c, d). Depletion of AT-
rich regions by restriction enzyme digest is performed 
after adapter ligation with the original cfDNA fragments. 
The resulting RRMP library should be able to preserve 
the length and end of cfDNA. The results of sequence 
length analysis showed that the RRMP datasets retained 
the length characteristics of cfDNA with a distribution 
peak of around 170 bp (Additional file 2: Fig S6 e), sug-
gesting that RRMP has the potential to allow the simulta-
neous analysis of cfDNA methylation, fragmentation, and 
end motifs.

Next, we investigated the predictive potential of 
RRMP data for breast cancer detection. Six samples were 
excluded due to insufficient coverage. 1547 CpGs in the 
promoter with coverage > 100 × in most samples were 
used to develop BC detection model using a supervised 
machine learning approach with LOO cross-validation 
(Additional file 1: Table S13). Within each fold, 49 sam-
ples were used to identify differentially methylated CpGs 
and to train the model to distinguish BC from NBC, 
and the remaining one sample was used to evaluate the 

performance of each model. The predicted results of all 
samples were used to calculate the AUC to represent 
the discrimination performance of BC and NBC and the 
result was 0.85 (Fig. 4e, f ).

Discussion
Methylation of CpG dinucleotides is an important epi-
genetic modification and plays a crucial role in cell dif-
ferentiation, proliferation, transcriptional regulation, and 
maintenance of genomic stability [31]. Global methyla-
tion analysis can be achieved by methods such as WGBS 
and RRBS; however, cost-effectively analyzing low input 
and highly fragmented DNA remains challenging. In 
this study, we introduce RRMP, which uses the opposite 
digestion strategy of RRBS to achieve efficient enrich-
ment and deep sequencing of CG-rich sequences and can 
analyze the specific methylation regions of tumor cells.

Compared to the traditional RRBS, the RRMP has 
obvious advantages, as it is a depletion after library 
preparation. RRMP is compatible with currently used 
methylation analysis methods such as WGBS, EM-seq, 
and targeted methylation sequencing by hybridization 
capture, and it is suitable for limited clinical samples 
or highly fragmented cfDNA samples [16, 17, 32]. The 
RRMP library preserves the length and end of the origi-
nal fragments. Thus, tumor-related information such as 
methylation signal, fragmentation, and end motifs can be 
analyzed simultaneously.

The methylation signal of circulating tumor DNA 
can be used as a liquid biopsy marker for tumor detec-
tion. Global methylation analysis of cfDNA is helpful for 
discovery of efficient tumor methylation markers [12, 
25]. We analyzed plasma samples from breast cancer 
and non-breast-cancer controls by RRMP and obtained 
methylation sequencing data enriched in CpG islands 
and promoters. Based on the CpG methylation signals in 
the promoter regions, the predictive model was able to 
distinguish breast cancer patients from controls, includ-
ing patients with breast nodules and mastitis.

Although we developed a new method for whole gene 
methylation sequencing, there were also several limita-
tions in this study. First, our approach was tested on a 
relatively low number of patients. Validation in a larger 
cohort can further demonstrate the reliability of the 
RRMP data for tumor detection. Second, although RRMP 
can enable genome-wide methylation analysis and has 
the potential to detect all tumor-associated methylation, 
the ability of RRMP to detect tumors other than breast 
cancer and to trace tumor tissue needs to be validated in 
clinical samples. Finally, we did not further analyze frag-
mentation and end motif of cfDNA using RRMP data to 
achieve better differentiation of breast cancer. Integrating 
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Fig. 4 Breast cancer detection using RRMP analysis of cfDNA. a, b Plots show the number of CpG islands (a) or promoters (b) with at least 100-fold 
combined coverage as a function of sequencing depth (x axis) for 4-cut RRMP and EM-seq from two cfDNA samples NBC16 and BC11. Vertical 
gray line indicates break in x-axis scale. c, d Heat maps compare individual CpG methylation values between 4-cut RRMP and EM-seq for cfDNA 
samples NBC16 (c, r = 0.86) and BC11 (d, r = 0.87). Analysis limited to CpGs with at least tenfold coverage (n = 6358 and 7028 CpGs). Percentages 
indicate the fraction of CpGs that differed between conditions (difference in beta values > 0.5). e Receiver operator characteristic curves (ROC) 
and area under the curve (AUC) values. f LOO cancer prediction scores for BC and NBC. Dashed line represents probability score threshold. Samples 
with a probability score above this threshold were predicted as BC
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multi-modal features from RRMP to enhance cancer 
detection is an important goal of our future work.

Abbreviations
RRMP  Reduced representative methylome profiling
cfDNA  Cell-free DNA
ctDNA  Circulating tumor DNA
WGBS  Whole-genome bisulfite sequencing
RRBS  Reduced representative bisulfite sequencing
XRBS  Extended-representation bisulfite sequencing
WBC  Whole blood cell
LOO  Leave one out
DMR  Differentially methylated region
BC  Breast cancer patients
NBC  Non-breast cancer individuals
ROC  Receiver operator characteristic curves
AUC   Area under the curve
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Additional file 1: Fig. S1. In silico restriction digestion analysis. a The 
amount of remaining reads from AT-rich reads  deletion of a public WGBS 
dataset for K562 cells. b The CG rate of remaining reads from AT-rich  
reads deletion of a public WGBS dataset for K562 cells, compared with a 
public RRBS dataset for  K562 cells. c The percentage of remaining reads 
mapping to CpG island, CpG shore or CpG shelf,  compared to the original 
WGBS dataset and a RRBS dataset. d The percentage of remaining reads  
mapping to promoter, compared to the original WGBS dataset and a RRBS 
dataset. Fig. S2. Genome plot for the GBGT1 gene locus compares read 
coverage between and WGBS,  XRBS, RRBS, 1-cut RRMP and 4-cut RRMP. 
Boxes represent reads, and unmethylated (blue) and  methylated (red) 
CpGs are indicated. CpG islands are indicated. Fig. S3. RRMP efficiently 
captures CpGs in CpG islands and promoters. a, b, Plots show the  number 
of CpG islands (a) or promoters (b) with at least 100-fold combined 
coverage as a function  of sequencing depth (x axis) for 4-cut RRMP(K562), 
XRBS (K562), WGBS (K562) and RRBS  (SW1353). Enrichment for functional 
elements at a uniform sequencing depth of 10 billion base  pairs is 
indicated. Vertical gray line indicates break in x-axis scale. c Plot compares 
CpG coverage  as a function of sequencing depth (x-axis) for WGBS, XRBS, 
RRBS, 1-cut RRMP and 4-cut RRMP.  d, e, Downsampling analysis plot as in 
panel c but restricted to CpGs within CpG islands (d) and  gene promoters 
(e). f Heat map shows genome-wide DNA methylation in 100-kb windows 
for 1- cut RRMP, XRBS, WGBS from K562 cells. Fig. S4. RRMP detects tumor-
related methylation differences. a Heat map shows Pearson  correlation 
of RRMP methylation profiles of 100 kb windows generated from 9 tumor 
cell lines and  3 WBC samples from healthy donors. b Heat map depicts 
hypermethylated and hypomethylated  regions in each type of tumor 
cells compared to WBC samples. Fig. S5. Cell-line-specific DNA hypometh-
ylation from RRMP correlates with H3K27ac signal.  Heat map depicts 
8-kb regions centered on H3K27ac peaks identified in NCI-H460 and 
HT29 ChIP-seq datasets. Rows are ordered by DNA methylation difference 
between both cell lines. Peaks not  specifically hypermethylated in either 
cell line (‘Others’) were downsampled for visualization. Fig. S6. RRMP 
efficiently captures CpGs in CpG islands and promoters using cfDNA. a 
Plot  compares CpG coverage as a function of sequencing depth (x-axis) 
for 4-cut RRMP and EM-seq.  b, c, Downsampling analysis plot as in panel 
c but restricted to CpGs within CpG islands (b) and  gene promoters (c). 
d Plot shows coverage depth of CpGs in 4-cut RRMP and EM-seq at a uni-
form  sequencing depth of 10 billion base pairs. e Length distribution of 
cfDNA fragments from breast  cancer patients (BC, n = 29) and non-breast 
cancer individuals (NBC, n = 27).

Additional file 2: Supplementary Table 1. Quality control metrics for all 
datastes in this study. Supplementary Table 2. DMRs in liver cancer cell 
lines comparing to WBCs. Supplementary Table 3. DMRs in lung cancer 
cell lines comparing to WBCs. Supplementary Table 4. DMRs in gastric 

cancer cell lines comparing to WBCs. Supplementary Table 5. DMRs in 
colorectal cancer cell lines comparing to WBCs. Supplementary Table 6. 
DMRs in breast cancer cell lines comparing to WBCs. Supplementary 
Table 7. Hypermethylated regions in five types of cancer cell lines com-
paring to WBCs. Supplementary Table 8. Hypomethylated regions in five 
types of cancer cell lines comparing to WBCs. Supplementary Table 9. 
Hypermethylated regions in each type of cancer cell lines comparing to 
WBCs. Supplementary Table 10. Hypomethylated regions in each type 
of cancer cell lines comparing to WBCs. Supplementary Table 11.  Char-
acteristics of patients for RRMP analysis. Supplementary Table 12. 1547 
CpGs in promoters for BC detection. Supplementary Table 13. Public 
datasets utilized in this study.
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