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Abstract 

Self‑control is a personality dimension that is associated with better physical health and a longer lifespan. Here, we 
examined (1) whether self‑control is associated with buccal and saliva DNA‑methylation (DNAm) measures of bio‑
logical aging quantified in children, adolescents, and adults, and (2) whether biological aging measured in buccal 
DNAm is associated with self‑reported health. Following preregistered analyses, we computed two DNAm measures 
of advanced biological age (principal‑component PhenoAge and GrimAge Acceleration) and a DNAm measure 
of pace of aging (DunedinPACE) in buccal samples from the German Socioeconomic Panel Study (SOEP‑G[ene], 
n = 1058, age range 0–72, Mage = 42.65) and saliva samples from the Texas Twin Project (TTP, n = 1327, age range 8–20, 
Mage = 13.50). We found that lower self‑control was associated with advanced biological age in older adults (Pheno‑
Age Acceleration β = − .34, [− .51, − .17], p < .001; GrimAge Acceleration β = − .34, [− .49, − .19], p < .001), but not young 
adults, adolescents or children. These associations remained statistically robust even after correcting for possible 
confounders such as socioeconomic contexts, BMI, or genetic correlates of low self‑control. Moreover, a faster 
pace of aging and advanced biological age measured in buccal DNAm were associated with self‑reported disease 
(PhenoAge Acceleration: β = .13 [.06, .19], p < .001; GrimAge Acceleration: β = .19 [.12, .26], p < .001; DunedinPACE: 
β = .09 [.02, .17], p = .01). However, effect sizes were weaker than observations in blood, suggesting that customization 
of DNAm aging measures to buccal and saliva tissues may be necessary. Our findings are consistent with the hypoth‑
esis that self‑control is associated with health via pathways that accelerate biological aging in older adults.
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Introduction
Self-control is a dimension of personality that encom-
passes the ability to delay gratification, inhibit behavioral 
impulses, and regulate the expression of emotions. Self-
control has been proposed to be a key behavioral media-
tor of both environmental and genetic risk factors for 
aging-related morbidity and mortality [10, 11, 17, 39, 40, 
54]. Individual differences in self-control arise early in the 
life course and are associated with myriad health-relevant 
behaviors and exposures, including sleep, substance use, 
nutrition, exercise, and socioeconomic attainments [8, 24, 
37, 60]. These behaviors and exposures have, in turn, been 
associated with a faster pace of biological aging across 
multiple physiological systems [42, 43, 63]. Little work, 
however, has directly investigated whether self-control is 
related to biological aging, which describes the gradual 
decline in system integrity across tissues and organs that 
occurs with advancing chronological age [27, 32].

Recently, DNA-methylation (DNAm) measures have 
been developed to quantify processes of biological aging. 
DNAm is a stable epigenetic marker that underpins the 
lifelong maintenance of cellular identity and a dynamic 
developmental process that changes with age and envi-
ronmental inputs [33]. Specifically, DNAm measures 
have been developed to quantify accelerated biologi-
cal age and mortality risk (e.g., GrimAge and PhenoAge 
Acceleration [30, 34]; as well as the pace of aging across 
18 physiological systems measured repeatedly in the 
same people (i.e., DunedinPACE, [5].

Recent research based on blood samples suggests that 
lower self-control is associated with accelerated biologi-
cal age and earlier mortality as indicated by GrimAge 
Acceleration in 17–50  years old adults [21, 29]. Moreo-
ver, in a five decade prospective study, children with 
lower self-control later experienced a faster pace of aging 
in midlife as indicated by analyses of physiological bio-
markers [53]. As adults, they were also less attentive to 
practical health information, less consistent in imple-
menting positive health behaviors, and exhibited less 
positive expectancies about aging. Additionally, those 
individuals’ self-control in midlife was associated with 
their pace of aging even after accounting for their self-
control in childhood. This suggests that self-control may 
exert differential influences on aging processes at differ-
ent points in the life span. It remains unexplored when 
in the life course associations of self-control with biologi-
cal aging may become visible; it could take decades until 
the aging consequences of low self-control arise. DNAm 
quantifications of biological aging in cohorts of varying 
ages can help address this question.

While DNAm measures of biological aging are typi-
cally developed using blood DNA, buccal and saliva 

DNA are also commonly collected, particularly in 
younger cohorts. Buccal and saliva can be sampled via 
postal kits and this procedure has substantially higher 
participation rates than blood sampling (e.g., saliva 72% 
vs. blood 31%, [19]. Previous findings provide evidence 
for good saliva-blood cross-tissue correspondence. 
Blood, saliva and buccal are partially composed of the 
same cell types: Blood samples consist of 100% immune 
cells, saliva in children consist of approximately ~ 35% 
epithelial cells and ~ 65% immune cells [38], and buccal 
cells in adults consist of ~ 80% epithelial cells and ~ 20% 
immune cells [59, 65]. While statistical corrections 
for people’s cell composition are common, immune 
cell DNAm may be particularly sensitive to early life 
exposures and aging-related inflammatory processes 
that can affect multiple tissues, including neurons 
[7]. Additionally, DNAm measures computed in both 
blood and saliva tissues from the same persons show 
high cross-tissue rank-order stability [47, 48]. More 
research is needed to assess the applicability of blood-
based DNAm measures particularly to buccal tissue, for 
which cross-tissue rank-order stability appears to be 
lower than saliva [50].

Here, we examined (1) whether self-control is asso-
ciated with buccal and saliva DNAm measures of bio-
logical aging (DunedinPACE, GrimAge Acceleration, 
and PhenoAge Acceleration) quantified in children, 
adolescents, and adults, and (2) whether biological 
aging measured in buccal DNAm is associated with 
self-reported health. Buccal DNA was collected from 
participants in the German Socioeconomic Panel Study 
(SOEP-G[ene], n = 1058, age range 0–72, Mage = 42.65) 
and saliva DNA from participants in the Texas Twins 
Project (TTP, n = 1327, 8–20, Mage = 13.50). We further 
tested whether associations differed by chronological 
age and remained after statistical correction for socio-
economic contexts, body mass index, and smoking, 
which are commonly associated with DNAm measures 
of biological aging [46–48], as well as a genetic correlate 
of low self-control (i.e., a polygenic score of externaliz-
ing problems, [26]. We employed principal-component-
based versions of PhenoAge and GrimAge Acceleration 
to increase reliability [23]. We preregistered our study 
and highlight where our measures or analyses deviated 
from our plan (https:// osf. io/ 5sejf, Additional file  1: 
Table S1). We report standardized beta parameters with 
95% confidence intervals. We report nominal p values 
taking p < .05 as a threshold, and note if results remain 
significant after Benjamini–Hochberg False-Discovery-
Rate method correction (FDR, [6]).

https://osf.io/5sejf
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Results

(1) Lower self-control is associated with accelerated bio-
logical age in buccal tissue from older participants, 
but not younger adults, adolescents, or children.

 First, we examined whether self-control was associated 
with DNAm measures of biological aging. In SOEP-G, 
we found that lower self-control (as measured by the 
Brief Tangney Self-control Scale [56], n = 333) was asso-
ciated with more advanced PhenoAge and GrimAge 
Acceleration but not with a faster DunedinPACE (Phe-
noAge β =  − .13 [− .25, − .01], p = .03; GrimAge β =  − .15 
[− .26, − .04], p = .01; DunedinPACE β =  − .06 [− .17, .04], 
p = .25). These associations did not survive FDR correc-
tion for multiple comparisons. In TTP, children and ado-
lescents’ self-control was not significantly associated with 
saliva DNAm measures of biological aging (see Fig.  1, 
Additional file 1: Tables S2 and S3).

Next, according to our pre-registered analysis plan, 
we examined whether the association between self-con-
trol and DNAm measures of biological aging differed by 
chronological age in SOEP-G. We regressed measures of 
biological aging on self-control, chronological age, and 
the interaction between self-control and age. We found 
that the association between self-control with Pheno-
Age and GrimAge Acceleration, but not DunedinPACE, 
was significantly moderated by chronological age (Phe-
noAge β =  − .20 [− .34, − .05], p < .01; GrimAge β =  − .17 
[− .28, − .06], p < .01; DunedinPace β =  − .10 [− .24, .03], 
p = .14). These interaction terms remained significant 
after FDR correction. Accordingly, lower self-control 
was associated with accelerated biological age in older 
participants.

To further characterize this age interaction, we strati-
fied participants into older and younger participants 
by mean split (Mage = 57.02). Among older participants 
(aged 57–72 years, n = 140), lower self-control was asso-
ciated with more advanced PhenoAge and GrimAge 
Acceleration (PhenoAge β =  − .34, [− .51, − .17], p < .001; 
GrimAge β =  − .34, [− .49, − .19], p < .001; see Fig.  1). 
In contrast, among younger participants (aged 19–56, 
n = 193), self-control was not associated with Pheno-
Age or GrimAge Acceleration (PhenoAge β = .06, [− .09, 
.21], p = .45; GrimAge β = .03, [− .19, .12], p = .66). The 
association between self-control and DunedinPACE was 
not statistically significant in younger or older partici-
pants (younger β = .02 [− .14, .17], p = .84; older β =  − .17, 
[− .35, .00], p = .06; see Fig. 1).

We have previously found that socioeconomic disad-
vantage is associated with accelerated buccal PhenoAge 
and GrimAge and a faster DunedinPACE in SOEP-G [50] 

as well as a faster saliva DunedinPACE, but not acceler-
ated PhenoAge or GrimAge, in a subsample of TTP chil-
dren [47, 48]. Therefore, we tested whether associations 
of self-control and DNAm measures of biological aging 
were accounted for by socioeconomic contexts.

We found that the association of self-control with Phe-
noAge and GrimAge Acceleration remained statistically 
significant after controlling for socioeconomic contexts 
in SOEP-G (see Additional file 1: Table S4). In contrast to 
a previous analysis of n = 600 TTP children, which found 
an association only with DunedinPACE, socioeconomic 
disadvantage was also associated with accelerated Grim-
Age in the current sample of n = 1327 TTP children, even 
after statistical correction for smoking, BMI, and puber-
tal timing (β =  − .13 [− .19, − .07], p < .001, Additional 
file 1: Table S5).

Additionally, associations of self-control with Pheno-
Age and GrimAge Acceleration in SOEP-G remained sta-
tistically significant after controlling for BMI, and genetic 
correlates of low self-control (see Additional file 1: Tables 
S6 and S7). (There were no self-reported smokers in the 
subsample that had data available on both self-control 
and DNAm measures.) Risk preference, which consisted 
of just one response item and was weakly correlated with 
the Brief-Tangney Self-control scale (r = .07, p < .05), was 
not associated with DNAm biological aging measures 
(see Additional file 1: Table S8).

In sum, lower self-control was associated with acceler-
ated biological age in older participants, but not younger 
adults, adolescents, or children.

(2) A faster pace of aging and accelerated biological age 
measured in buccal DNAm are associated with worse 
self-reported health.

 Next, non-preregistered analyses evaluated whether 
buccal DNAm measures of biological aging were associ-
ated with self-reported disease and self-reported health 
in SOEP-G (n = 797). These analyses focused on SOEP-G 
as the TTP consists of children and adolescents that are 
generally in good health. The moderate-to-strong cor-
relation coefficient (r =  − .64, 95% CI =  − .67 to − .61, 
p < .001) between self-reported disease and self-reported 
general health indicates that both measures are tapping 
into a common domain (i.e., health), but nevertheless 
capture unique components of health and well-being. 
While self-reported disease assesses people’s current 
state of physical disease (higher scores indicate higher 
disease burden), self-reported health assesses whether 
people can live their life without any limitations due to 
physical and/or mental health problems (higher scores 
indicate better health; scale is reverse coded in Fig. 2).
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We found that accelerated biological age and faster 
pace of aging were significantly associated with more 
self-reported disease (PhenoAge Acceleration: β = .13 
[.06, .19], p < .001; GrimAge Acceleration: β = .19 [.12, 
.26], p < .001; DunedinPACE: β = .09 [.02, .17], p = .01). 
Accelerated biological age, but not pace of aging, was 
also associated with worse health, as indicated by self-
reported general physical and mental health (See Fig. 2; 

PhenoAge Acceleration: β =  − .12 [− .19, − .05], p < .001; 
GrimAge Acceleration: β =  − .14 [− .21, − .07], p < .001; 
DunedinPACE: β =  − .00 [− .08, .07], p = .967). These 
results remained significant after FDR correction. There 
were no significant interaction effects with age (see Addi-
tional file 1: Table S9).

Next, we tested whether associations of buccal DNAm 
measures of biological aging with health were statistically 

Fig. 1 Associations between self‑control and DNA‑methylation measures of biological aging. Note The age group split presented in our 
findings serve to illustrate the significant interactions, as the regression analyses employ age as a continuous variable. DNAm‑aging measures 
and self‑control are scaled, and principal‑component‑based versions of PhenoAge and GrimAge Acceleration were used. Self‑control was measured 
with the BTS in SOEP‑G and with the grit scale in TTP. See Additional file 1: Fig. S1 for associations of DNAm with attention problems and impulsivity 
measures in TTP
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accounted for by socioeconomic contexts, BMI, and 
smoking. We found that the association between Duned-
inPACE and self-reported disease severity was accounted 
for by BMI and socioeconomic contexts (see Additional 
file 1: Table S10 and S11). Associations between Pheno-
Age and GrimAge Acceleration with self-reported dis-
ease severity and health remained statistically significant 
after accounting for BMI, smoking and socioeconomic 
contexts (see Additional file 1: Table S10 and S11).

Finally, we examined whether buccal DNAm measures 
of biological aging statistically accounted for associations 

of self-control with health (n = 333). GrimAge Accel-
eration statistically accounted for 9% of the associations 
between self-control and self-reported disease sever-
ity and health, respectively, in the total sample (indirect 
effect β =  − .02, [− .04, − .00], p = .03, see Table  1). We 
repeated these analyses for older participants only, for 
whom self-control was associated with PhenoAge and 
GrimAge Acceleration (see above). Among older par-
ticipants, GrimAge Acceleration statistically accounted 
for 26% of the association between self-control and 
self-reported disease severity (indirect effect β =  − .07, 

Fig. 2 Standardized associations between buccal DNAm measures of biological aging and health in SOEP‑G (principal‑component‑based 
versions of PhenoAge and GrimAge Acceleration were used). Higher levels of self‑reported disease indicate worse health. For illustration purposes, 
self‑reported health was reverse coded such that higher levels also reflect worse health

Table 1 Indirect path estimates of DNA‑methylation measures of biological aging statistically accounting for associations of self‑
control with health

Bold estimates significant at the p <.05 level

Accelerated biological age Pace of aging

PhenoAge acceleration GrimAge acceleration DunedinPACE

B 95% CI p B 95% CI p B 95% CI p

Self-control → disease severity

Total effect  − .22 [− .28, − .16]  < .001  − .22 [− .28, − .16]  < .001  − .22 [− .28, − .16]  < .001
Direct effect  − .21 [− .27, − .15]  < .001  − .20 [− .27, − .14]  < .001  − .22 [− .28, − .15]  < .001
Indirect effects  − .01 [− .03, .02] .09  − .02 [− .04, − .00] .03  − .01 [− .02, 01] .47

Self-control → health

Total effect .22 [.15, .29]  < .001 .22 [.15, .29]  < .001 .22 [.15, .29]  < .001
Direct effect .21 [.14, .28]  < .001 .21 [.14, .27]  < .001 .22 [.15, .29]  < .001
Indirect effects .01 [− .00, .03] .10 .02 [.00, .03] .04  − .00 [− .01, .01] .85
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[− .14, − .01], p = .03, see Additional file  1: Table  S12). 
These indirect pathways were significant at the nominal p 
value, but not survive FDR correction. Importantly, these 
mediation analyses are based on cross-sectional data and 
thus do not allow for causal inference.

Discussion
We examined (1) whether self-control is associated with 
buccal and saliva DNAm measures of biological aging 
quantified in children, adolescents, and adults, and (2) 
whether biological aging measured in buccal DNAm is 
associated with self-reported health. First, we found that 
lower self-control was associated with more advanced 
biological aging in older participants (57–72  years), but 
not young adults, adolescents or children. The associa-
tion between self-control with PhenoAge and GrimAge 
Acceleration in older participants remained statistically 
significant after controlling for socioeconomic contexts, 
BMI, smoking, and genetic correlates of self-control. Sec-
ond, our results indicated that both advanced biological 
age and a faster pace of aging measured in buccal DNAm 
were associated with more self-reported disease. While 
the association between DunedinPACE and self-reported 
disease severity was accounted for by BMI, smoking 
and socioeconomic contexts, PhenoAge and GrimAge 
Acceleration were related to self-reported disease after 
accounting for BMI, smoking and socioeconomic status. 
PhenoAge and GrimAge Acceleration were also related 
to self-reported health, over and above covariate control. 
Our finding that DunedinPACE is only related to our dis-
ease measure but not our health measure might indicate 
it is more sensitive to measures of physical than mental 
health.

Thus, despite low-to-moderate cross-tissue corre-
spondence across blood and buccal measures (PhenoAge 
Accel. r = .25, GrimAge Accel. r = .48, DunedinPACE. 
r = .31; [50], buccal DNAm measures of biological aging 
appear to capture aging processes relevant to disease and 
health. But, effect sizes were weaker than observations in 
blood (GrimAge and health in buccal β = .10–.20 versus 
blood β = .10–.50, [15, 16, 25, 31, 36]. Thus, customiza-
tion of DNAm aging measures to buccal tissues may be 
necessary to maximize their utility.

Collectively, our findings are consistent with the 
hypothesis that self-control is associated with health via 
pathways that accelerate biological aging in midlife and 
older age. Among older SOEP-G participants, buccal 
GrimAge Acceleration statistically accounted for 26% of 
the association between self-control and self-reported 
disease severity and health. Among younger SOEP-G and 
Texas Twin participants, self-control was not associated 
with biological aging. The effects of self-control-related 
behaviors on biological aging are likely to accumulate 

over time, thus, the aging consequences of low self-con-
trol may not be visible in the first few decades of life, 
when people are generally healthy. Moreover, findings 
from a prospective birth cohort study suggest that self-
control in childhood compared to self-control in midlife 
shows lower rank order stability and may exert independ-
ent influences on later life aging [53].

We acknowledge limitations. First, our study is based 
on cross-sectional data and can therefore not make 
inferences about the direction of the effects between 
self-control, biological aging, and health. We cannot 
disentangle whether differences in self-control cause 
accelerated aging and worse health or, in reverse, worse 
health causes lower self-control and advanced biological 
aging. Similarly, age differences in associations between 
self-control and biological aging could arise from devel-
opmental differences or cohort effects related to genera-
tional differences (e.g., environmental toxicants, social 
structures). Second, our findings are likely to be some-
what tissue specific. It is possible, for example, that self-
control is associated with the pace of aging in younger 
samples when DNAm is quantified in blood rather than 
saliva. In order to take full advantage of buccal and saliva 
DNA samples, DNAm algorithms developed in these 
tissues may be needed. Third, our measures of self-con-
trol were limited and differed between the two cohorts. 
Future research measuring self-control across inform-
ants, ages, and situations is important to tap into the 
broader range of real-world capacities that comprise this 
umbrella construct.

In conclusion, we find that self-control is associated 
with buccal DNA-methylation measures of biological 
aging in midlife and older adulthood in a health-relevant 
manner. If the cross-sectional findings reported here are 
found to be causal, then interventions that are successful 
in increasing self-control might extend the health span 
[18]. Alternatively, people’s proximate environments can 
be manipulated to put less demand on individual self-
control behaviors [52].

Methods
Participants
SOEP‑G
The Socioeconomic Panel (SOEP) is an ongoing popula-
tion-based, multi-generational survey study. Parts of the 
SOEP are the “SOEP core” and the “SOEP-Innovation 
Sample (SOEP-IS), which are two independent random 
samples of German Households. The SOEP core consists 
of a broad set of standard survey questions on socioeco-
nomic and sociodemographic background, SOEP-IS sup-
plements this by incorporating data gathered through 
special questions and experimental modules. In total, 
SOEP-IS includes 6,576 participants, who were invited 
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to participate in buccal DNA genotyping as part of the 
“gene subsample” (SOEP-G; [28]). In total, there are poly-
genic indices available for n = 2,063 adults (Mage = 56.13, 
 SDage = 18.72, 54% female), with 98% of participants 
showing high genetic similarity to European reference 
groups (see [28]).

Based on the availability of funds, residual frozen DNA 
samples of n = 1128 of the SOEP-G sample were selected 
for DNA-methylation analyses. The inclusion criteria 
were as following: (1) samples from children and adoles-
cents with residual DNA samples holding at least 50 ng 
of DNA, (2) adults with extending age distribution past 
18 years, that had at least 250 ng of DNA left, had a call 
rate of at least 0.975, and did not have participating chil-
dren in the dataset to maximize number of households, 
and (3) match between genetic sex and self-reported sex 
(see [49] for more details). This resulted in the availabil-
ity of DNA-methylation data for n = 1058 participants 
(Mage = 42.42,  SDage = 21.17, 58% female), for whom poly-
genic scores are also available (see above).

TTP
The Texas Twin Project (TTP) is an population-repre-
sentative longitudinal study investigating children and 
adolescents in the greater metropolitan areas of Aus-
tin, Texas [20]. It has polygenic and DNAm data avail-
able for n = 1327 children and adolescents (Mage = 13.50, 
 SDage = 3.10, 48% females, 34.6% monozygotic twins, 
58.9% dizygotic twins). Participants self-identified as 
White (59.5%), Hispanic/Latinx-only (10.7%), Black/
African-American (10.4%), Asian (8.5%), and Hispanic/
Latinx-White (7.8%).

Measures
Measures are described in Table  2 and include descrip-
tion of the deviation from our preregistration if applica-
ble. Descriptives are presented in Table 3.

Genotyping
SOEP‑G
A detailed description of the genetic data in SOEP-G can 
be found in [28]. In short, genotyping was conducted 
using the Illumina Infinium Global Screening Array-24 
v3.0 BeadChips. Genotypes were subject to quality con-
trol excluding participants with sex-gender mismatch, 
with per-chromosome missingness of more than 50%, 
and with excess heterozygosity/homozygosity.

The Haplotype Reference Consortium reference panel 
(r.1.1) for imputation was used with imputation accu-
racy (R2) greater than 0.1. Approximately 66% of the 
imputed SNPs were rare with minor allele frequencies 
(MAF) smaller than 0.01 and ~ 24% SNPs were com-
mon. The average imputation accuracy in the data was 

0.66, with higher imputation accuracy for common SNPs 
(MAF > 0.05) with an average imputation accuracy of 
0.92. To control for population stratification, the first 20 
principal components (PCs) were computed for individu-
als with high genetic similarity to European reference 
groups, based on ~ 160,000 approximately independent 
SNPs with imputation accuracy ≥ 70% and MAF ≥ 0.01 
[28].

TTP
The DNA samples were genotyped using the Illumina 
Infinium PsychArray at the University of Edinburgh, 
which assays ~ 590,000 single nucleotide polymorphisms 
(SNPs), insertions-deletions (indels), copy number vari-
ants (CNVs), structural variants, and germline variants 
across the genome. Genotypes were subjected to qual-
ity control. Briefly, samples were excluded when the call 
rate was < 98% and when there was inconsistent report-
ing between biological and self-reported sex. Variants 
were excluded if more than 2% of the data was missing. 
Untyped variants were imputed on the Michigan Impu-
tation Server, with genotypes being phased with Eagle 
v2.4 and imputed with Minimac4 (v1.5.7), using the 
1 K Genomes Phase 3 v5 panel as a reference panel [4]. 
Thresholds for minor allele frequency (MAF < 1e−3) and 
Hardy–Weinberg Equilibrium (HWE p value < 1e−6) 
were be applied. Imputed genotypes with poor imputa-
tion quality (INFO score < .90) were excluded.

Preprocessing methylation data
SOEP‑G
Data collection Buccal swabs and Isohelix IS SK-1S Dri-
Capsules were used to collect DNA data. DNA extraction 
and methylation profiling were conducted at the Eras-
mus Medical Center in the Netherlands by the Human 
Genomics Facility (HuGe-F).

DNA-methylation data Methylation levels were 
assessed using the Infinium MethylEPIC v1 manifest 
B5 kit at 865,918 CpG sites (Illumina, Inc., San Diego, 
CA). All samples were from the same batch. DNAm pre-
processing was conducted using Illumina’s GenomeS-
tudio software and the packages ‘minfi,’ ‘ewastools’ and 
‘EpiDISH’ in open-source R version 4.2.0 [3, 22, 51, 66]. 
Data cleaning took place in three steps.

First, 20 control metrics were generated in GenomeS-
tudio (see BeadArray Controls Reporter Software Guide 
from Illumina). Samples were flagged and excluded when 
falling below the Illumina-recommended cutoffs, includ-
ing (1) all types of poor bisulfite conversion and all types 
of poor bisulfite conversion background, (2) all types of 
bisulfite conversion background < 0.5, (3) all types of poor 
specificity, (4) all types of poor hybridization (excluded 
n = 43). Second, unreliable data points were identified 
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resulting from low fluorescence intensities. Probes with 
only background signal in a high proportion of samples 
(proportion of samples with detection p value > .01 is > .1) 
and probes with a high proportion of samples with low 
bead numbers (proportion of samples with bead num-
ber < 3 is > 0.1) were removed. Additionally, cross-reac-
tive probes for Epic arrays and probes with SNPs at the 
CG or single base extension were also removed [35, 45]. 

Third, we corrected for background noise and color dye 
bias (with ‘PreprocessNoob’ in minfi, [61], accounted for 
probe-type differences (with ‘BMIQ’ in minfi, [58] and 
estimated cell composition using robust partial correla-
tions (with ‘HEpiDisch’ in EpiDISH). In order to call the 
sample a ‘buccal sample’ we set a threshold of 0.5 for epi-
thelial cell proportions [49].

TTP
Methylation profiling was conducted by Edinburgh Clini-
cal Research Facility, using the Infinium Methylatio-
nEPIC BeadChip kit (Illumina, Inc., San Diego, CA) to 
assess methylation levels at 850,000 methylation sites. 
Briefly, preprocessing was conducted with the ‘minfi’ 
package in R version 4.0.4 [3, 51]. Within-array nor-
malization was performed to address array background 
correction, red/green dye bias, and probe type I/II cor-
rection. To correct for background correction and dye-
bias equalization, we applied minfi’s “preprocessNoob” 
[61]. Data cleaning took place in three steps. CpG probes 
were excluded if (1) detection p > .01, (2) there were fewer 
than 3 beads in more than 1% of the samples, (3) they 
were in cross-reactive regions. Samples were excluded 
if (1) there was mismatch between self-reported and 
methylation estimated sex, (2) they showed low intensity 
probes as indicated by the log of average methylation and 
their detection p was > .01 in > 10% of their probes. In R 
we estimated composition of the immune and epithelial 
cell types in the samples using “BeadSorted.Saliva.EPIC” 
within “ewastools” in R, and surrogate variable analyses 
were used to correct for batch effects (3 batches) using 
the “combat” function in the SVA package.

Statistical analyses
Analyses were conducted in R version 4.4.2 and Mplus 
8.9 statistical software [41, 57]. To correct for depend-
ency of observations due to clustering in families (SOEP-
G for the PGI analyses) and due to repeated measures 
within individuals and multiple twin pairs within families 
(in TTP), we used a sandwich estimator to estimate clus-
ter-robust standard errors. All models included age, gen-
der, and an age-by-gender interaction as covariates, and 
all variables of interest were standardized for interpreta-
tion purposes. We report nominal p values taking p < .05 
as a threshold, and additionally note if results remain sig-
nificant after Benjamini–Hochberg False-Discovery-Rate 
method (FDR, [6]) correction. See Table 2 and Additional 
file  1: Table  S1 for a list of preregistered analyses and 
measures and deviations if applicable.

Table 3 Descriptives for main variables of interest in DNAm 
subsamples of SOEP‑G and TTP

We compared participants who filled in the BTS to those who did not fill in 
this questionnaire. Those who filled in the BTS were slightly older and did not 
smoke, but did not significantly differ on other demographics such as education, 
income, BMI and gender (see Additional file 1: Table S13). For the demographics 
separately for older and younger participants (see “Results” section 1), see 
Additional file 1: Table S14. See Raffington et al. [50] for a discussion on inflated 
means in buccal DNA-methylation measures of biological aging

Variable n Mean SD

SOEP-G

Brief Tangney Self‑Control Scale 
(BTS)

333 3.36 0.56

Risk Preference 829 5.58 2.28

Household Income (Euro) 1044 3318.07 1859.59

Household income/persons 
household

1044 1497.82 827.05

Max education household (years) 1042 13.34 2.76

Age (years) 1058 42.65 21.18

Sex 610 females

Self‑reported smoking 87 smoke

Body Mass Index (BMI) 876 26.73 5.95

Self‑reported Disease Severity 797 2.57 0.98

Self‑reported Health 797 4.19 0.85

DunedinPACE 1058 1.64 0.11

PhenoAge 1058 99.15 18.81

GrimAge 1058 74.30 15.9

TTP

Attention problems 1159 0.76 0.41

Impulsivity 638 10.72 3.31

Grit 702 26.06 4.30

Household Income (Euro) 733 152,303 266,504

Max education household (years) 819 17.50 2.62

Age (years) 1327 13.46 3.1

Sex 1327 647 females

Self‑reported smoking 645 58 smokers

Body Mass Index (BMI) 1317 20.38 5.02

Pubertal development 1271 2.60 0.92

DunedinPACE 1327 1.14 0.16

PhenoAge 1327 42.78 9.57

GrimAge 1327 43.10 3.56
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