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Air pollution-induced placental alterations:
an interplay of oxidative stress, epigenetics,
and the aging phenotype?
N. D. Saenen1†, D. S. Martens1†, K. Y. Neven1, R. Alfano1, H. Bové1, B. G. Janssen1, H. A. Roels1, M. Plusquin1,
K. Vrijens1 and T. S. Nawrot1,2*

Abstract

According to the “Developmental Origins of Health and Disease” (DOHaD) concept, the early-life environment is a
critical period for fetal programming. Given the epidemiological evidence that air pollution exposure during
pregnancy adversely affects newborn outcomes such as birth weight and preterm birth, there is a need to pay
attention to underlying modes of action to better understand not only these air pollution-induced early health
effects but also its later-life consequences. In this review, we give an overview of air pollution-induced placental
molecular alterations observed in the ENVIRONAGE birth cohort and evaluate the existing evidence. In general, we
showed that prenatal exposure to air pollution is associated with nitrosative stress and epigenetic alterations in the
placenta. Adversely affected CpG targets were involved in cellular processes including DNA repair, circadian rhythm,
and energy metabolism. For miRNA expression, specific air pollution exposure windows were associated with
altered miR-20a, miR-21, miR-146a, and miR-222 expression. Early-life aging markers including telomere length and
mitochondrial DNA content are associated with air pollution exposure during pregnancy. Previously, we proposed
the air pollution-induced telomere-mitochondrial aging hypothesis with a direct link between telomeres and
mitochondria. Here, we extend this view with a potential co-interaction of different biological mechanisms on the
level of placental oxidative stress, epigenetics, aging, and energy metabolism. Investigating the placenta is an
opportunity for future research as it may help to understand the fundamental biology underpinning the DOHaD
concept through the interactions between the underlying modes of action, prenatal environment, and disease risk
in later life. To prevent lasting consequences from early-life exposures of air pollution, policy makers should get a
basic understanding of biomolecular consequences and transgenerational risks.
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Air pollution and the Developmental Origins of
Health and Disease hypothesis
Air pollution is a global public health issue causing prema-
ture death and disease. It comprises different pollutants in
gaseous (i.e., carbon oxides, nitrogen oxides, sulfur oxides,
and ozone), volatile (i.e., ammonia, polycyclic aromatic hy-
drocarbons, and quinones), or particulate form (i.e., coarse,
fine or ultrafine particles, and black carbon) derived from
both natural and anthropogenic sources. In 2015, a

component of air pollution, namely particulate matter
smaller than 2.5 μm in aerodynamic diameter (PM2.5), was
estimated to cause 4.2 million of deaths worldwide of
which 202,000 children younger than 5 years [1]. Children
are at higher risk of adverse health effects caused by air
pollution, even at low levels, because their immune
system and lungs are not fully developed, especially
during in utero and early life [2].
Life in utero is considered a particularly sensitive

period during which maternal exposure to unfavorable
conditions may not only influence fetal development and
induce adverse pregnancy outcomes but also have long-
term effects influencing offspring susceptibility to dis-
eases later in adulthood, as postulated by the
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Developmental Origins of Health and Disease (DOHaD)
hypothesis [3, 4]. Substantial evidence associates expos-
ure to air pollution during pregnancy with a range of ad-
verse health outcomes at birth, including increased risk
of low birth weight [5–7] and prematurity [6, 8], and
also in adult life, such as cardiovascular disease [9], re-
spiratory problems [10–12], and neurodevelopmental al-
terations [13] and even cancers [14]. However, the
biological chain of events through which exposure to air
pollution in utero influences an individual’s later-life
health is still poorly known. As the placenta is a crucial
organ for fetal development, alterations in the placenta
on the molecular level, induced by air pollution, may be
important as to the early origins of health and disease.
This altered biomolecular functioning of the placenta
may contribute to early and even later-life health
consequences. In this review, we describe all the
available evidence of placental molecular processes
associated with prenatal air pollution exposure in the
ENVIRONAGE (ENVIRonmental influence ON AGE-
ing in early life) birth cohort, situated in Belgium
[15]. The biomolecular processes associated with air pol-
lution exposure can be categorized into nitrosative
stress, epigenetic alterations, and aging markers.
Alterations in these placental molecular processes may
lead to an altered newborn phenotype which may
underlie a higher susceptibility for developing diseases
later in life.

Can air pollution particles reach the human
placenta?
In a recent review, numerous investigations exam-
ined whether (nano) particles, in general, can pass
the placenta and showed a dependency on size,
shape, and surface charge [16]. Furthermore, a study
by Valentino et al. [17] strengthened the hypothesis
of transplacental particle translocation by showing
“nanoparticle-like” aggregates in the cytoplasm of
placental trophoblastic cells of rabbits exposed to
aerosolized diesel exhaust particles. While these ex-
perimental studies show that translocation across the
placenta is biologically possible, no such direct evi-
dence in the context of human life exists. Recently,
we detected the abundant presence of black carbon
(BC) particles in human placenta at both the mater-
nal and fetal side (Fig. 1) [18]. These findings con-
firm that ambient particles can be translocated
directly towards the fetus and represent a potentially
novel mechanism explaining the adverse effects from
early life onwards, in addition to particle-induced in-
flammation in the lungs. Furthermore, we showed that
urinary carbonaceous particles reflect residential BC ex-
posure and traffic-related exposure [19], showing the
translocation of particles from the lung to the system.

Air pollution and placental oxidative/nitrosative
stress
As air pollution particles may translocate into and cross
the placental barrier [18, 20], they may induce placental
modifications [21]. Oxidative stress may be one of the
key elements of air pollution-induced placental alter-
ations. Air pollution particles are able to generate react-
ive oxygen/nitrogen species (ROS/RNS) in both a direct
and indirect way [22]. Particles may have free radicals
present on their surface or may directly generate reactive
hydroxyl radicals via a Fenton reaction in the presence
of soluble transition metals on the particle surface, such
as for instance iron [23]. One of the indirect sources of
ROS production is through the PM-induced altered func-
tioning of NADPH oxidases, telomere-mitochondrial dys-
regulation, and activation of inflammatory cells [22, 24].
These generated ROS can in turn directly induce lipid, pro-
tein, and DNA damage. Within the ENVIRONAGE birth
cohort, we assessed placental nitrosative stress and mito-
chondrial 8-deoxyguanosine damage. We observed that
each interquartile range (IQR) increment in entire preg-
nancy PM2.5 exposure resulted in a 35.0% (95% CI 13.9 to
60.0%) increase in placental 3-nitrotyrosine levels, whereas
an IQR increase in BC showed a 13.9% (95% CI − 0.21
to 29.9%) increase [25]. Direct oxidative damage in
mitochondria was measured by 8-hydroxy-2′-deoxygua-
nosine (8-OHdG) levels in cord blood and maternal
blood samples. Interestingly, we observed that elevated

Fig. 1 Evidence of black carbon particles from ambient air
pollution in human placenta. White-light generation by the black
carbon particles (white and further indicated using arrowheads)
under femtosecond pulsed laser illumination is observed. Second
harmonic generation from collagen (red) and two-photon
autofluorescence from placental cells (green) are detected
simultaneously. Scale bar 40 μm [18]
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exposure to PM10 during trimester 1 and 2 of pregnancy
resulted in an increase in mitochondrial 8-OHdG, while
results for PM2.5 were less pronounced [26]. Whether this
observation is reflective of placental mitochondrial dam-
age remains to be elucidated. Within this regard, a study
of 891 newborns of the Czech Republic showed in-
creased 8-OHdG in placenta in association with expos-
ure to PM2.5 in the first 4 months of pregnancy [27].
These authors also observed that newborns with above-
median levels of 8-OHdG had higher probability of
intrauterine growth restriction compared with new-
borns below-median level of oxidative DNA damage.
Taken together, these findings demonstrate that air

pollution-related ROS/RNS production may affect the in
utero environment. This can be supported by previous
studies investigating smoking during pregnancy [28] and
environmental toxic metals [29] in association with oxi-
dative stress in the placenta.

Air pollution-induced placental epigenetic
alterations
Placental epigenetics is another important target to study
early-life effects of air pollution, which includes changes
in DNA methylation, histone and noncoding RNA modifi-
cation, and chromatin remodeling. These processes are
able to influence health outcomes during the life course
and even across generations [30–32]. During pregnancy,
especially DNA methylation is an important mechanism
as it is involved in “epigenetic reprogramming”. During
this process, DNA methylation patterns are erased and re-
established, first in gametogenesis and again in early em-
bryogenesis [33]. These epigenetic waves make the early
embryonic development a critical period [34]. Within the
ENVIRONAGE birth cohort, we have studied placental
epigenetic signatures in association to air pollution on dif-
ferent levels, from global DNA methylation, gene-specific
DNA methylation to miRNA expression, and we focused
both on nuclear and mitochondrial DNA (mtDNA) tar-
gets. Our findings from epigenetic alterations induced
by air pollution exposure in the ENVIRONAGE birth
cohort are summarized in Table 1, in addition to other
available evidence.

Placental global DNA methylation
In 2013, we were the first to show in 240 mother-
newborn pairs that placental global DNA methylation
was inversely associated with first trimester PM2.5 expos-
ure, especially during the critical period of implantation
[35]. These findings were confirmed by another study
which showed that pregnant mothers living close to
major roadways (i.e., a marker of traffic-related air pollu-
tion) had lower levels of placental DNA methylation in
LINE-1 but not AluYb8, which are surrogate markers of
global DNA methylation [36]. Furthermore, in a Chinese

study involving 181 mother-newborn pairs (80 fetal growth
restriction newborns, 101 normal weight newborns), pla-
cental LINE-1 DNA methylation was inversely associated
with first trimester PM10 exposure [37]. In contrast, a
nested case-control study (n = 100) in Iran showed a posi-
tive correlation of global methylation with first trimester
PM2.5 and PM10 exposure [38]. It should be mentioned that
the Iran study did not use the same technique nor investi-
gated LINE-1 DNA methylation. Furthermore, the EDEN
cohort showed a positive association of placental Alu DNA
methylation with day before birth PM10 exposure but not
with placental LINE-1 DNA methylation [39]. Nevertheless,
these studies highlight that air pollution exposure already
has an important impact on methylation patterns very early
in embryonic development, directly after conception. This
may be critical in development as it has been shown in
mice that disturbances of DNA methylation in the placenta
are associated with abnormal embryonic development [40]
and that genetic inactivation of DNA methyltransferases
(DNMTs) is lethal to developing mouse embryos [41].

Placental candidate gene methylation
We have carried out different candidate gene methyla-
tion studies (Table 1). The rationale of these studies was
based on the DOHaD hypothesis, in which we focused
on key biological processes that are involved both in
growth and development early in life and in age-related
diseases later in life. We analyzed in the placentas of 407
newborns the promoter regions of regulatory genes in
the circadian pathway (i.e., the central biological clock
that maintains the daily cellular rhythm in accordance
with the external environment). PM2.5 exposure during
the last trimester of pregnancy was positively associated
with placental methylation of CLOCK, BMAL1, NPAS2,
CRY1-2, and PER1-3 [42]. Previous findings stipulated
that dysfunctions in the clock mechanism are prevalent
in a variety of diseases, such as cancer, metabolic condi-
tions, and neurological disorders [43, 44].
Further, we evaluated whether promoter regions of key

DNA repair genes (including base-excision and nucleotide-
excision repair genes) and tumor suppressor genes were
differentially methylated in the placenta (n = 463). Higher
entire pregnancy PM2.5 exposure was positively associated
with methylation of the promoter regions from repair
genes (APEX1, OGG1, ERCC4) and from the tumor sup-
pressor p53, whereas promoter methylation of DAPK1 was
inversely associated. Similar findings were observed for
APEX1 and ERCC1 in association with BC exposure [45].
In addition, we found that increased levels of both PM2.5

and BC were positively associated with higher mutation
rates in placental DNA. These findings are in line with a
study of Perera and colleagues [46], who showed that air
pollution can induce aromatic DNA adducts in cord blood,
and with an experimental study of Zhou and colleagues

Saenen et al. Clinical Epigenetics          (2019) 11:124 Page 3 of 14



Ta
b
le

1
O
ve
rv
ie
w

of
pl
ac
en

ta
le
pi
ge

ne
tic

ta
rg
et
s
in

as
so
ci
at
io
n
w
ith

ai
r
po

llu
tio

n
ex
po

su
re

A
ut
ho

r
St
ud

y
po

pu
la
tio

n
Te
ch
ni
qu

e
St
ud

ie
d
ai
r
po

llu
ta
nt

Re
su
lt

D
N
A
m
et
hy
la
tio

n

G
lo
ba
lD

N
A
m
et
hy
la
tio

n

Ja
ns
se
n
et

al
.[
35
]

24
0
m
ot
he

r-
ne

w
bo

rn
pa
irs

fro
m

th
e
EN

VI
RO

N
A
G
E
bi
rt
h

co
ho

rt
,B
el
gi
um

U
PL
C/
M
S-
M
S

+
5
μg

/m
3
PM

2.
5
du

rin
g
th
e

im
pl
an
ta
tio

n
pe

rio
d
(6
–2
1
da
ys

af
te
r
co
nc
ep

tio
n)

G
lo
ba
lm

et
hy
la
tio
n
−
1.
08
%
,9
5%

CI
−
1.
80

to
−
0.
36
%
,

p
=
0.
00
4

+
5
μg

/m
3
PM

2.
5
du

rin
g
th
e
fir
st

tr
im

es
te
r

G
lo
ba
lm

et
hy
la
tio
n
−
2.
41
%
,9
5%

CI
−
3.
62

to
−
1.
20
%
,

p
=
0.
00
01

+
5
μg

/m
3
PM

2.
5
du

rin
g
th
e

se
co
nd

tr
im

es
te
r

G
lo
ba
lm

et
hy
la
tio
n
−
1.
51
%
,9
5%

CI
−
2.
66

to
−
0.
36
%
,

p
=
0.
01

+
5
μg

/m
3
PM

2.
5
du

rin
g
th
e

en
tir
e
pr
eg

na
nc
y

G
lo
ba
lm

et
hy
la
tio
n
−
2.
19
%
,9
5%

CI
−
3.
65

to
−
0.
73
%
,

p
=
0.
00
4

Ki
ng

sl
ey

et
al
.[
36
]

47
1
m
ot
he

r-
ne

w
bo

rn
pa
irs

fro
m

th
e
RI
C
H
S
bi
rt
h
co
ho

rt
,

U
SA

Bi
su
lfi
te
-P
C
R-
py
ro
se
qu

en
ci
ng

≤
15
0
m

pr
im

ar
y
hi
gh

w
ay

or
pr
im

ar
y
ro
ad

or
≤
50

m
fro

m
se
co
nd

ar
y
ro
ad

Li
vi
ng

cl
os
e
to

m
aj
or

ro
ad
w
ay
:L
IN
E-
1
−
0.
82
%
,

95
%
CI
−
1.
57

to
−
0.
07
%
,p

=
0.
03

Al
uY
b8
:n
o
as
so
ci
at
io
n,
p
=
0.
07

C
ai
et

al
.[
37
]

18
1
m
ot
he

r-
ne

w
bo

rn
pa
irs

(8
0
fe
ta
lg

ro
w
th

re
st
ric
tio

n
ne

w
bo

rn
s,
10
1
no

rm
al

ne
w
bo

rn
s)
fro

m
W
en

zh
ou

,
C
hi
na

Bi
su
lfi
te
-P
C
R-
py
ro
se
qu

en
ci
ng

+
10

μg
/m

3
PM

10
du

rin
g
th
e

fir
st
tr
im

es
te
r
of

pr
eg

na
nc
y

Fe
ta
lg

ro
w
th

re
st
ric
te
d
ne

w
bo

rn
s:

LI
N
E-
1
−
1.
78
%
,9
5%

CI
−
3.
35

to
−
0.
22
%
,p

<
0.
05

N
or
m
al
ne

w
bo

rn
s:
LI
N
E-
1
no

as
so
ci
at
io
n

M
ag
hb

oo
li
Z
et

al
.[
38
]

N
es
te
d
ca
se
-c
on

tr
ol

(n
=
50
/5
0)

of
pr
eg

na
nt

w
om

en
in

Te
hr
an
,

Ira
n

RP
-H
PL
C

PM
2.
5
an
d
PM

10
du

rin
g
th
e

fir
st
tr
im

es
te
r

G
lo
ba
lm

et
hy
la
tio
n:
r=

0.
26

(p
=
0.
01
)a
nd

r=
0.
38

(p
=
0.
00
01
)r
es
pe
ct
iv
el
y

A
br
ah
am

et
al
.[
39
]

66
8
m
ot
he

r-
ne

w
bo

rn
pa
irs

fro
m

th
e
ED

EN
co
ho

rt
,F
ra
nc
e

Bi
su
lfi
te
-P
C
R-
py
ro
se
qu

en
ci
ng

+
10

μg
/m

3
PM

10
da
y
be

fo
re

bi
rt
h

G
lo
ba
lm

et
hy
la
tio
n:
Al
u:
β
=
0.
08
;p

=
0.
01

LI
N
E-
1:
β
=
0.
09
;p

=
0.
28

G
en

e-
sp
ec
ifi
c
m
et
hy
la
tio

n

Ja
ns
se
n
et

al
.[
49
]

38
1
m
ot
he

r-
ne

w
bo

rn
pa
irs

fro
m

th
e
EN

VI
RO

N
A
G
E
bi
rt
h

co
ho

rt
,B
el
gi
um

Bi
su
lfi
te
-P
C
R-
py
ro
se
qu

en
ci
ng

+
7.
8
μg

/m
3
PM

2.
5
du

rin
g
th
e

fir
st
tr
im

es
te
r
of

pr
eg

na
nc
y

M
T-
RN

R1
+
1.
27
%
,9
5%

C
I0
.2
3
to

2.
32
%
,p

<
0.
05

D
-lo
op

+
0.
44
%
,9
5%

C
I0
.1
2

to
0.
75
%
,p

<
0.
05

+
3
μg

/m
3
PM

2.
5
du

rin
g
th
e

en
tir
e
pr
eg

na
nc
y

M
T-
RN

R1
+
0.
91
%
,9
5%

C
I0
.5
6
to

4.
18
%
,p

<
0.
05

D
-lo
op

+
0.
21
%
,9
5%

C
I−

0.
00
3

to
1.
02
%
,p

>
0.
05

C
ai
et

al
.[
37
]

18
1
m
ot
he

r-
ne

w
bo

rn
pa
irs

(8
0
fe
ta
lg

ro
w
th

re
st
ric
tio

n
ne

w
bo

rn
s,
10
1
no

rm
al

ne
w
bo

rn
s)
fro

m
W
en

zh
ou

,
C
hi
na

Bi
su
lfi
te
-P
C
R-
py
ro
se
qu

en
ci
ng

+
10

μg
/m

3
PM

10
du

rin
g
th
e

fir
st
tr
im

es
te
r
of

pr
eg

na
nc
y

Fe
ta
lg

ro
w
th

re
st
ric
te
d
ne

w
bo

rn
s:
H
SD

11
B2

+
1.
03
%
,

95
%

C
I0
.0
7
to

1.
98
%
,p

<
0.
05

+
10

μg
/m

3
PM

10
du

rin
g
th
e

se
co
nd

tr
im

es
te
r
of

pr
eg

na
nc
y

Fe
ta
lg

ro
w
th

re
st
ric
te
d
ne

w
bo

rn
s:
H
SD

11
B2

+
2.
23
%
,

95
%

C
I0
.6
9
to

3.
76
%
,p

<
0.
05

To
ta
lp

op
ul
at
io
n:
H
SD

11
B2

+
1.
42
%
,

95
%

C
I0
.2
4
to

2.
57
%
,p

<
0.
05

+
10

μg
/m

3
PM

10
du

rin
g
th
e

en
tir
e
pr
eg

na
nc
y

To
ta
lp

op
ul
at
io
n:
H
SD

11
B2

+
1.
98
,9
5%

C
I0
.5
3

to
3.
43
%
,p

<
0.
05

Sa
en

en
et

al
.[
48
]

36
1
m
ot
he

r-
ne

w
bo

rn
pa
irs

Bi
su
lfi
te
-P
C
R-
py
ro
se
qu

en
ci
ng

+
7.
5
μg

/m
3
PM

2.
5
du

rin
g

LE
P
−
1.
4%

,9
5%

C
I−

2.
7
to

−
0.
19
%
,p

=
0.
02

Saenen et al. Clinical Epigenetics          (2019) 11:124 Page 4 of 14



Ta
b
le

1
O
ve
rv
ie
w

of
pl
ac
en

ta
le
pi
ge

ne
tic

ta
rg
et
s
in

as
so
ci
at
io
n
w
ith

ai
r
po

llu
tio

n
ex
po

su
re

(C
on

tin
ue
d)

A
ut
ho

r
St
ud

y
po

pu
la
tio

n
Te
ch
ni
qu

e
St
ud

ie
d
ai
r
po

llu
ta
nt

Re
su
lt

fro
m

th
e
EN

VI
RO

N
A
G
E
bi
rt
h

co
ho

rt
,B
el
gi
um

th
e
se
co
nd

tr
im

es
te
r

N
ev
en

et
al
.[
45
]

46
3
m
ot
he

r-
ne

w
bo

rn
pa
irs

fro
m

th
e
EN

VI
RO

N
A
G
E

bi
rt
h
co
ho

rt
,B
el
gi
um

Bi
su
lfi
te
-P
C
R-
py
ro
se
qu

en
ci
ng

+
3.
84

μg
/m

3
PM

2.
5
du

rin
g

th
e
en

tir
e
pr
eg

na
nc
y

AP
EX
1
+
7.
34
%
,9
5%

C
I0
.5
2
to

14
.1
6%

,p
=
0.
00
9

O
G
G
1
+
13
.0
6%

,9
5%

C
I3
.8
8
to

22
.2
4%

,p
=
0.
00
5

ER
CC

4
+
16
.3
1%

,9
5%

C
I5
.4
3
to

27
.1
8%

,p
=
0.
00
3

p5
3
+
10
.6
0%

,9
5%

C
I4
.4
6
to

16
.7
4%

,p
=
0.
00
3

D
AP
K1

−
12
.9
2%

,9
5%

CI
−
22
.3
5
to

−
3.
49
%
,p

=
0.
00
7

+
0.
36

μg
/m

3
BC

du
rin

g
th
e
en

tir
e
pr
eg

na
nc
y

AP
EX
1
+
9.
16
%
,9
5%

C
I4
.0
6
to

14
.2
5%

,p
=
0.
00
5

ER
CC

4
+
27
.5
6%

95
%

C
I1
7.
58

to
37
.5
5%

,p
<
0.
00
01

N
aw

ro
t
et

al
.[
42
]

40
7
m
ot
he

r-
ne

w
bo

rn
pa
irs

fro
m

th
e
EN

VI
RO

N
A
G
E

bi
rt
h
co
ho

rt
,B
el
gi
um

Bi
su
lfi
te
-P
C
R-
py
ro
se
qu

en
ci
ng

+
8.
9
μg

/m
3
PM

2.
5
du

rin
g

th
e
th
ird

tr
im

es
te
r

Lo
g(
fo
ld

ch
an
ge

)
N
PA
S2

0.
16
,9
5%

C
I0
.0
6

to
0.
27
,p

=
0.
00
2

Lo
g(
fo
ld

ch
an
ge

)
CR

Y1
-2

0.
59
,9
5%

C
I0
.2
2

to
0.
95
,p

=
0.
00
2

Lo
g(
fo
ld

ch
an
ge

)
PE
R1

−
0.
51
,9
5%

C
I−

0.
90

to
−
0.
13
,p

=
0.
00
1

Lo
g(
fo
ld

ch
an
ge

)
PE
R3

0.
42
,9
5%

C
I0
.1
8

to
0.
67
,p

=
0.
00
1

+
7.
9
μg

/m
3
PM

2.
5
du

rin
g

th
e
fir
st
tr
im

es
te
r

Lo
g(
fo
ld

ch
an
ge

)
CL
O
CK

−
0.
59
,9
5%

C
I−

0.
93

to
−
0.
25
,p

<
0.
00
1

m
iR
N
A
ex
pr
es
si
on

Ts
am

ou
et

al
.[
65
]

21
0
m
ot
he

r-
ne

w
bo

rn
pa
irs

fro
m

th
e
EN

VI
RO

N
A
G
E

bi
rt
h
co
ho

rt
,B
el
gi
um

qR
T-
PC

R
+
5
μg

/m
3
PM

2.
5
du

rin
g
th
e

fir
st
tr
im

es
te
r
of

pr
eg

na
nc
y

m
iR
-2
0a

+
70
.9
%
,9
5%

C
I1
6.
7
to

15
0.
3%

,p
=
0.
00
7

m
iR
-2
1
+
73
.7
%
,9
5%

C
I1
1.
7
to

17
0.
1%

,p
=
0.
01
5

+
5
μg

/m
3
PM

2.
5
du

rin
g
th
e

se
co
nd

tr
im

es
te
r
of

pr
eg

na
nc
y

m
iR
-1
46
a
−
30
.9
%
,9
5%

CI
−
48
.0
to

−
8.
1%

,p
=
0.
01
2

m
iR
-2
22

−
25
.4
%
,9
5%

C
I−

43
.0
to

−
2.
4%

,p
=
0.
03
4

m
iR
-2
1
−
33
.7
%
,9
5%

C
I−

53
.2
to

−
6.
2%

,p
=
0.
02
2

Saenen et al. Clinical Epigenetics          (2019) 11:124 Page 5 of 14



[47], in which hypermethylation of p53 was shown in hu-
man bronchial epithelial cells after 10 days of PM2.5

exposure.
We also observed an inverse association between placen-

tal LEP promoter methylation (i.e., an energy-regulating
hormone involved in fetal growth and development) and
PM2.5 exposure during the second trimester of pregnancy
[48]. Additionally, this association was strengthened by the
determination of the oxidative/nitrosative stress biomarker
3-nitrotyrosine (3-NTp) [48], which showed a similar asso-
ciation as the modeled PM2.5 exposures, that was inde-
pendent of maternal smoking.
Aside from the ENVIRONAGE birth cohort, further evi-

dence was found by Cai et al. [37] showing that exposure to
PM10 during the first two trimesters of pregnancy was posi-
tively associated with placental methylation of HSD11B2
(i.e., genes involved in the glucocorticoid metabolism and
fetal growth). The observed associations were more
pronounced in the fetal growth-restricted newborn
subset (n = 80), compared to the normal growth new-
borns (n = 101).
Finally, we evaluated methylation of two regions of the

mtDNA, i.e., D-loop control region and the 12S rRNA.
In a study sample of 381 mother-newborn pairs, higher
methylation levels of these two mitochondrial genome
regions in association with prenatal PM2.5 exposure were
observed, with the first trimester as most critical expos-
ure window [49]. A higher methylation of mtDNA in
relation to air pollution exposure is in accordance with a
study in the blood of steelworkers [50].
Altogether, these candidate-based methylation studies

show that mapping placental epigenome modifications
attributable to air pollution offers a unique opportunity
to unravel biomolecular signatures playing a potential
role in the mediation of air pollution influence on post-
natal life [51].

Placental miRNA expression
In placental tissue, microRNA expression has been ob-
served both in extracellular vesicles and in tissue biop-
sies. Several studies showed the ability of microRNA
expression patterns to link pregnant women who were
at risk of developing preeclampsia [52], preterm birth [53],
or fetal growth restriction [54]. Furthermore, microRNA
expression patterns in placental tissue have been shown to
act in a sexually dimorphic manner in relation to both ma-
ternal obesity [55] and placental stress [56].
Until now, most studies focused on chemical exposures

including cadmium [57], phthalates [58], arsenic [59], and
endocrine disrupting chemicals [60] in association with
placental miRNAs. Moreover, multiple studies confirm a
role for miRNAs in the response to air pollution exposure
in adults [61–63]. However, the literature on air pollution

exposure in association with placental or, more broadly,
early in life microRNA expression in humans is limited.
The first evidence for a role of miRNA expression in re-

sponse to air pollution exposure in prenatal life came from
an animal study [64]. In this study, pregnant rats were ex-
posed to PM2.5 for extended periods of time, causing an
increased number of immune cells in mother rats. Expres-
sion levels of cerebral cortical miR-6315, miR-3588, and
miR-466b-5p were upregulated while a decreased expres-
sion of miR-338-5p and let-7e-5p was observed. Further,
PM2.5 exposure increased miR-3560 and let-7b-5p in the
hippocampus, while miR-99b-5p, miR-92b-5p, and miR-
99a-5p were decreased. All of these miRNAs were related
to neurobiological processes [64].
We were the first human cohort (ENVIRONAGE) on air

pollution exposure and placental miRNA expression in
which we investigated six miRNAs (miR-16, miR-20a,
miR-21, miR-34a, miR-146a, miR-222) in 210 placenta
samples (Table 1). These miRNAs are involved in import-
ant cellular processes such as cell cycle, proliferation, apop-
tosis, inflammation, and angiogenesis. A positive
association with first-trimester PM2.5 exposure was identi-
fied for placental miR-20a expression, whereas second-
trimester exposure was negatively associated with the ex-
pression of miR-21a, miR-146a, and miR-222. Further-
more, first-trimester PM2.5 exposure was positively
associated with miR-21 expression, whereas it was nega-
tively associated with second-trimester PM2.5 exposure.
Tumor suppressor phosphatase and tensin homolog
(PTEN) was identified as a common target of the miRNAs
significantly associated with PM exposure [65].
One other study used cord blood as biological sample

for miRNA expression and smoking status as exposure.
They investigated whether miR-155 and miR-233 ex-
pression in 450 cord blood and maternal blood samples
from the LINA (Lifestyle and Environmental Factors and
Their Influence on Newborns Allergy Risk) study was
associated with smoking behavior during pregnancy [66].
They found that increased maternal urinary cotinine
concentrations (i.e., a marker for short-term smoking ex-
posure) during pregnancy were associated with elevated
miR-223 expression in cord blood. Cord blood miR-155
expression was related to lower toluene metabolite S-
benzylmercapturic acid concentrations in maternal urine.
Moreover, they demonstrated in newborns that a high
miR-223 expression in cord blood cells was associated
with lower cord blood regulatory T cell numbers.

Air pollution exposure and the aging phenotype
Besides epigenetic alterations in association with air
pollution exposure, more downstream placental tar-
gets to evaluate the potential impact of air pollution
in the DOHaD hypothesis were evaluated in the
ENVIRONAGE birth cohort. We have a profound

Saenen et al. Clinical Epigenetics          (2019) 11:124 Page 6 of 14



interest in aging-related targets, including telomeres
and mitochondria. This is because of the fact that
these targets have been widely studied in adult popu-
lations and have been associated with age-related dis-
eases. Telomeres shorten throughout the life-span,
and this shortening may be influenced by environ-
mental factors, including air pollution [67]. Telomeres
play a role in cell senescence and human aging and
are indicative of disease risks, and in this regard,
short telomeres have independently of chronological
age been associated with higher risks for cardiovascu-
lar disease [68], type 2 diabetes [69], respiratory dis-
eases [70], and mortality [71]. In addition,
mitochondrial dysfunction and mutations play an im-
port role in neurodegenerative diseases [72], cardio-
vascular diseases [73], and aging [74].
In the ENVIRONAGE birth cohort, we observed for

174 newborns a decrease of 17.4% in placental mtDNA
content for a 10-μg/m3 increment in PM10 exposure
during the third trimester of pregnancy [75]. Further-
more, in a larger subset of 381 individuals, we observed
that an increment of 10-μg/m3 in PM2.5 during the third
trimester was associated with a decrease of 23.6% in
mtDNA content [49]. In 2017, we showed that placental
telomere length (TL) was negatively associated with
PM2.5 exposure during weeks 15–27 of gestation [76]. In
this study, we applied a distributed lag model which en-
abled us to investigate weekly exposures during preg-
nancy in association with placental TL. The estimated
effect of a 5-μg/m3 increase in PM2.5 during the second
trimester and entire pregnancy was associated with 7.1%
and 13.2% shorter placental TL, respectively. Further-
more, shorter placental TL has been observed with in-
creased residential proximity to a major road and a
decreased residential greenness [77], and with prenatal
cadmium exposure [78].
The importance of placental TL for later-life condi-

tions is rather unclear. However, if placental TL re-
lates to cell senescence, this may influence placental
aging, with health consequences on the short- and
potential long-term. In this regard, it has been shown
that placental senescence is observed in placentas
complicated with intrauterine growth restriction or
preeclampsia, and indeed, shorter placental TL was
observed in these conditions [78]. This directly im-
pacts fetal development and outcomes. In uncompli-
cated pregnancies, a high variability in placental TL is
observed [79], and although these pregnancies may
result in a healthy newborn phenotype, later-life con-
sequences may be programmed at the level of telo-
meres. Indeed, it has been shown that placental TL
may predict later-life TL [80], and therefore, changes
in placental TL may be predictive for later-life risks
in telomere length-associated diseases. However,

prospective follow-up studies are needed to confirm
whether newborn TL indeed reflects later-life disease
risks.

Interplay of oxidative stress, epigenetics, and the
air pollution-induced telomere/mitochondrial axis
of aging
We previously proposed the air pollution-induced
telomere-mitochondrial aging hypothesis [24], with its
fundamental basis on findings of a direct link between
mitochondria and telomeres [81, 82]. Telomeres are highly
sensitive to ROS, and air pollution has shown to increase
levels of ROS, which may target telomeres, and shorten
them leading to potential dysfunctional telomeres (Fig. 2).
Telomere dysfunction in mice showed p53 activation
which resulted in suppression of peroxisome proliferator-
activated receptor gamma (Pparγ) co-activator 1 alpha
and beta (Pgc-1α,β) genes [81]. Repression of Pgc-1α,β
leads to a strong decrease in mitochondrial biogenesis and
function, subsequently leading to an impaired ATP gener-
ation and an increase in ROS production. Alterations in
the energy metabolism are a driver of the aging process.
Furthermore, DNA damage at telomeres activates
several signaling pathways and reduces Sirt1 gene ex-
pression, which leads to mitochondrial dysfunction,
partially through elevated p53 and reduced PGC [83].
This indicates an intimate relationship and interaction
between telomeres and mitochondria.
However, extending this view with epigenetic regulation

of TL and mitochondria may be essential in understand-
ing air pollution-induced placental molecular alterations
as shown in the ENVIRONAGE study (Fig. 2). In this
regard, clear evidence is available that a dynamic regula-
tion of epigenetic marks and TL is present, because both
epigenetic marks may influence TL regulation and
homeostasis, but vice versa telomere shortening may alter
epigenetic marks. In this regard, it has been shown that
telomeric and subtelomeric regions are enriched in tri-
methylated histones H3K9me3 and H4K20me3 (trimethy-
lation of histone H3 at lysine 9 and of histone H4 at lysine
20), and subtelomeric regions are highly methylated by
DNMT1, DNMT3a, and DNMT3b enzymes [84]. This
high DNA and histone methylation state has shown to be
a negative regulator of TL [84], as cells deficient in
DNMTs displayed a strong decrease of subtelomeric DNA
methylation and showed elongated telomeres, potentially
due to telomerase, and increase telomere recombination
[85]. On the other hand, TL may influence the epigenetic
landscape. As telomeres shorten, this may lead to a
decrease in trimethylation of H3K9 and H4K20 in the
telomeric and subtelomeric region as well as a decrease in
subtelomeric DNA methylation as shown in telomerase-
deficient Terc−/− mice experiments with short telomeres
[86]. However, subsequently, this may lead to telomere

Saenen et al. Clinical Epigenetics          (2019) 11:124 Page 7 of 14



Fig. 2 (See legend on next page.)
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elongation and maintenance processes as described above.
In human population-based studies, lower global DNA
methylation (LINE-1 and Alu) has been associated with
shorter telomeres [87, 88].
Within the context of air pollution actions on the epi-

genetic landscape, several theories exist how changes in
DNA methylation status can be induced: (1) ROS gener-
ated by air pollution-induced oxidative stress can react
with DNA, resulting into different DNA lesions, including
base modifications, strand breaks, and inter- and intra-
strand crosslinks [89]. Due to these DNA alterations,
DNMTs are not able to recognize this damaged DNA as a
reaction substrate, which leads to a global hypomethyla-
tion [90]. Additionally, it has been shown that the repair
of damaged DNA by homologous recombination (HR) in-
duces DNA methylation [91], and chromatin, damaged by
oxidative stress, recruits DNMT1, which results in DNA
methylation changes [92]. One of the most frequently
occurring ROS-generated DNA lesions is the oxidation of
guanine, resulting in the formation of 8-OHdG [93]. The
presence of an 8-OHdG residue inhibits the ability of
DNMT to methylate nearby located cytosines [94]. Fur-
thermore, ROS can increase 5mC oxidation via 5hMC,
which eventually leads to global hypomethylation [95]. (2)
Environmental chemicals may interfere with S-adenosyl
methionine (SAM) which results in a methylation reduc-
tion by DNMT due to a depletion of available methyl
groups from SAM [96, 97]. Furthermore, DNMT gene ex-
pression is reduced by long-term environmental exposures
[98, 99]. (3) Another suggested mechanism is the so-called
transcription factor occupancy theory, in which an
interplay between the presence or absence of tran-
scription factors (TF) and the degree of gene-specific
DNA methylation exists [96]. In this regard, research
by Martin and Fry [100] showed that genes of which
the methylation status (evaluated in cord blood or pla-
centa) was associated with prenatal exposures (includ-
ing arsenic, cadmium, lead, manganese, mercury, and
tobacco smoke), shared binding sites for TFs that had
a known relationship with these prenatal exposures.
A role of microRNAs in the regulation of DNA methy-

lation and telomeres has also been shown (Fig. 2). In
Dicer1-deficient mice, a downregulation of the miR-290
cluster was observed. This downregulation leads to an

increase in mRNA levels of Rbl2 (retinoblastoma-like 2
protein) that subsequently inhibits DNMT expression.
This decrease in DNMT results in a hypomethylation of
the genome and subtelomeric regions, leading to the
aforementioned increase in TL and telomere recombin-
ation [101]. In this regard, we could evaluate in a small
sub-population of the ENVIRONAGE birth cohort that
placental TL was associated with miRNA expression.
More precisely, we observed that miR-34a, miR-146a,
miR-210, and miR-222 expression was positively associ-
ated with placental TL in newborn girls [102]. However,
in this small sub-population (n = 203), the mediating
effect of miRNA expression in the association between
air pollution and TL could not be evaluated. Neverthe-
less, as high exposure to PM2.5 during second trimester
was associated with both shorter placental TL and a
reduced miR-146a and miR-222 expression, and both
miRNAs were associated with longer placental TL in
girls, these miRNA targets may warrant further atten-
tion. Also, in these miRNA-air pollution associations,
ROS may play an important role [103]. First, ROS could
act on the biogenesis enzymes of miRNAs, and it has
been shown that H2O2-treated JAR trophoblast cells se-
lectively inhibited Dicer activity [104, 105]. Second, ROS
may regulate miRNA expression through the alteration
of transcription factors, including p53 and NF-κB [103].
p53 is a major tumor suppressor involved in cellular
senescence and is assumed to play a pivotal role in our
proposed “hypothesis” [24]. Air pollution exposure may
alter the expression of p53, and recent studies showed
that p53, as a transcription factor, is an important regu-
lator of miRNA expression [106]. Therefore, p53 may be
an important target which links air pollution and
miRNA regulation with a potential implication as to the
aging phenotype and later-life diseases. Finally, miRNA
genes are by themselves under the regulation of DNA
methylation [103], and therefore, the air pollution/ROS-
related DNA methylation regulatory mechanisms may
affect miRNA expression, indicating a close interplay be-
tween the different epigenetic mechanisms.
Aside from nuclear DNA, it should be noted that

mitochondria are the second cellular location to house
an abundance of DNA (mtDNA). During recent years, it
has been shown that the mitochondrial genome can also

(See figure on previous page.)
Fig. 2 An extended view of the air pollution-induced telomere-mitochondrial aging hypothesis. Our previous hypothesis showed that the
presence of air pollution-induced ROS within cells induces DNA damage which leads to telomere shortening. Both DNA damage and telomere
shortening are associated with increased levels of p53, which on its turn leads to increased mitochondrial dysfunction. Furthermore, disturbances
in mitochondria can also increase cellular ROS production. We extended this view with epigenetic regulation. A dynamic regulation exists
between epigenetic marks and TL. High trimethylated histones at the subtelomeric and telomeric region as well as high subtelomeric DNA
methylation by DNMTs are a negative regulator of TL. Additionally, shortening of telomeres leads to a decrease in both histone trimethylation
and subtelomeric DNA methylation and global DNA methylation (Alu, LINE-1). Furthermore, microRNAs might be involved through DICER1
regulation that is linked to DNMT expression and on its turn affects methylation processes of the genome and subtelomeric regions. Finally,
miRNAs are also under the regulation of both DNA methylation and p53. Both p53 and DICER1 may be under regulation of ROS
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undergo epigenetic modifications. Within the ENVIRO-
NAGE birth cohort, we were able to evaluate that indeed
an important interplay exists between placental mtDNA
content and mtDNA methylation. We observed that the
effect of prenatal PM2.5 exposure on placental mtDNA
content was mediated for 54% by mitochondrial 12S
RNA methylation and for 27% by mitochondrial D-loop
methylation [49]. Although studies on mitochondrial
epigenetics are still in its infancy, PM2.5 exposure may
be a potential candidate with important links to mito-
chondrial epigenetics [107].

Challenges and opportunities for using the
placenta in early-life environmental exposure
research
The findings we reviewed in this paper underscore the
sensitivity of the biomolecular system to environmental
factors during the early period of developmental plasti-
city. Methylation patterns are re-established during early
pregnancy, making this a highly sensitive window of
susceptibility to the effects of prenatal air pollution ex-
posure. This may lead to an adaptive response altering
placental and fetal development with possibly a long-
lasting impact in later life. However, the crucial question
remains about the time window in which air pollution
exposure influences biomolecular processes during
pregnancy as measurements on placenta can only be
performed at birth. In this respect, it is noteworthy that
in observational studies, the conventional approach of
averaging exposures over relatively large time windows
(trimesters or the entire pregnancy) can be further refined
by using distributed lag models to allow a more detailed
investigation of prenatal exposure windows and enable the
identification of critical periods during pregnancy for the
association with air pollution exposure [76, 108].
Until now, most studies investigating early-life air pol-

lution exposure and placental alterations have focused
on DNA methylation, while we were the first investigat-
ing microRNAs and even aging-related markers. This
can probably be explained by the interpretation capabil-
ity and the availability of high-throughput laboratory
techniques [109]. But even for biomolecular processes,
changes need to be interpreted in the context of their
biological relevance. For example, although DNA methy-
lation is usually associated with alterations in gene ex-
pression [110], it is not known whether small changes in
the methylation status of a given promoter necessarily
translate into an alteration in gene expression [111, 112].
Furthermore, establishing a cutoff value for differential
DNA methylation as biologically relevant is difficult, as
this can depend on the type of study, sample size, het-
erogeneity of the tissue, the method or technique used,
or even interpretation of the data. In this respect, larger
differences are desirable between cases and controls for

a certain disease phenotype, whereas for epidemiological
studies, subtle changes in DNA methylation levels can
have a functional meaning by revealing biological path-
ways involved in disease development or to unravel
underlying mechanisms of action. In the ENVIRONAGE
birth cohort, the reported associations of air pollution
exposure with biomolecular processes are generally low
in terms of the size of the estimate, although they are
significant in terms of nominal p values [113]. To prevail
false-positive or false-negative findings, studies should
participate in consortia to analyze their findings to im-
prove the generalization of the results [30]. Within this
context, the Pregnancy and Childhood Epigenetics cohort
(PACE [114], n > 29,000) investigates the cord blood
methylome. Similar approaches for placenta epigenetics
are currently initiated but must carefully consider differ-
ences in the definition of exposures, biological sampling,
laboratory techniques, and demographic and lifestyle char-
acteristics of the study population.
Another challenge is that each molecular layer will not

only interact with themselves but also display reciprocal
relations with other biological networks as discussed in
this review. Therefore, studies would benefit from using
multi-omics approaches in which different molecular
levels are integrated. So far, a few studies in adults in-
cluded more than one molecular layer of epigenetics or
other omics, for example by combining DNA methyla-
tion with the transcriptome [115], with inflammatory
protein levels [115, 116], or with genetic variation [117].
In addition, the heterogeneity of the biological sample

is also challenging when using the placenta. Gene regu-
lation is tissue-, cell-, and context-specific, giving rise to
cell-to-cell variation. Cellular composition explains a
large part of the observed variability in gene regulation;
thus, failing to account for the cellular heterogeneity
may result in false-positive outcomes [109]. Measuring
the cellular composition would be ideal but is in practice
not always feasible. In the past years, efforts have been
made to establish algorithms that predict peripheral and
cord blood cell composition [118, 119]; however, for pla-
centa, this is not available. Expanding these algorithms
to underexplored tissues such as placenta will improve
interpretation of results with regard to environmental
exposures on placental molecular alterations.
Although molecular alterations are at times an adap-

tive reaction rather than a cause of disease, we now
know that these changes may play an important role in
diseases, including cancer, and occur long before disease
develops. Epidemiological evidence demonstrated the
role of diet and stress in changing the epigenetic pro-
gram over generations. Examples of this are evidenced
in the Dutch hunger winter study [120] and Holocaust
survivors and their offspring [121]. These extreme living
conditions entailed permanent changes in the epigenetic
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make-up, and among similar lines, evidence is accumu-
lating that this occurs also for less stringent environ-
mental conditions or exposures. Epigenetic analysis, as
demonstrated in our overview, can be used to assess in
utero and transgenerational effects. Therefore, epigenet-
ics can lead us to understand the fundamental biology
underpinning Barker’s DOHaD hypothesis in terms of
interactions between the genome, prenatal environment,
and disease risk. For example, Janssen et al. [35] showed
placental hypomethylation in association with prenatal
PM exposure. Furthermore, the observations of transpla-
cental carcinogenesis by air pollution-induced ALU
mutation rate parallels changes in the methylation of
genes involved in the DNA repair machinery [45].
While we are only at the beginning to understand

transplacental mechanisms, the evidence is mounting
that prenatal exposure to ambient air pollution, oxida-
tive stress, epigenetic alterations in DNA repair genes,
metabolic genes, and changes in biological aging pro-
cesses are all molecular processes involved in age-related
diseases including cancer. The strength of molecular epi-
demiology within environmental health is the progress it
offers in the understanding of fetal programming and
the unraveling of the complex interplay between external
and biological factors in order to increase our knowledge
about DOHaD in terms of diseases at older age.
Developmental vulnerability should be a priority for

environmental public health policies and practices to
protect the most susceptible period of human life due to
the long-term consequences. Follow-up of child or birth
cohorts is crucial to understand the clinical conse-
quences of early-life epigenetic changes on sub-optimal
organ development resulting in a decreased reserve cap-
acity of different organ systems and its risk later in life.
The strategy aiming at effective protection of pregnant
women, unborn children, and infants against lifelong
consequences of exposure to combinations of adverse
lifestyle factors requires that public health policy makers
should get a basic understanding of epigenetic conse-
quences and transgenerational risks.
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