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Abstract

Background: DNA methylation has started a recent revolution in genomics biology by identifying key biomarkers
for multiple cancers, including oral squamous cell carcinoma (OSCC), the most common head and neck squamous
cell carcinoma.

Methods: A multi-stage screening strategy was used to identify DNA-methylation-based signatures for OSCC prognosis.
We used The Cancer Genome Atlas (TCGA) data as training set which were validated in two independent datasets from
Gene Expression Omnibus (GEO). The correlation between DNA methylation and corresponding gene expression and the
prognostic value of the gene expression were explored as well.

Results: The seven DNA methylation CpG sites were identified which were significantly associated with OSCC overall
survival. Prognostic signature, a weighted linear combination of the seven CpG sites, successfully distinguished the overall
survival of OSCC patients and had a moderate predictive ability for survival [training set: hazard ratio (HR) = 3.23, P = 5.
52 × 10−10, area under the curve (AUC) = 0.76; validation set 1: HR = 2.79, P = 0.010, AUC = 0.67; validation set 2: HR = 3.69,
P = 0.011, AUC = 0.66]. Stratification analysis by human papillomavirus status, clinical stage, age, gender, smoking status, and
grade retained statistical significance. Expression of genes corresponding to candidate CpG sites (AJAP1, SHANK2, FOXA2,
MT1A, ZNF570, HOXC4, and HOXB4) was also significantly associated with patient’s survival. Signature integrating of DNA
methylation, gene expression, and clinical information showed a superior ability for prognostic prediction (AUC = 0.78).

Conclusion: Prognostic signature integrated of DNA methylation, gene expression, and clinical information provides a better
prognostic prediction value for OSCC patients than that with clinical information only.
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Background
Oral squamous cell carcinoma (OSCC) is the most com-
mon head and neck squamous cell carcinoma (HNSCC),
affecting approximately 48,000 individuals and causing
9500 deaths in the USA in 2016 [1]. The overall 5-year
survival rate for OSCC is around 60% [2] and has only
improved modestly over the past two decades despite con-
siderable improvements in the treatment of OSCC [3, 4].
This can be attributed to limited understanding of OSCC
carcinogenesis, development, progression, invasion, and

metastasis [5], which sharply delays early diagnosis.
Therefore, identification of molecular changes in signifi-
cant oncogenes or tumor suppressor genes associated with
OSCC will help improve survival prediction and early
treatment [6, 7].
Epigenetic changes are inheritable and reversible, affect-

ing the spatial conformation of DNA and its transcriptional
activity [8]. DNA methylation changes may influence gene
expression and interact with various positive and negative
feedback mechanisms [9]. Therefore, aberrant methylation
CpG sites have been considered potential prognostic factors
not only in OSCC [10] but also in other cancers as well
[11–13].
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Previous studies have reported survival-related OSCC
biomarkers at different omics levels, including somatic
mutations [14], gene expression [15], miRNAs [16], and
proteins [17]. Methylation markers have also been re-
ported [18, 19]. However, these studies have relatively
small sample sizes and are limited to a single epigenetic
level. Therefore, more attention should be given to the re-
lationship between methylation and gene expression [20].
In this study, we investigated the prognostic value of

methylation biomarkers for OSCC overall survival. We
generated a prognostic model using data from The Can-
cer Genome Atlas (TCGA), which are now continually
hosted at the Genomics Data Commons (GDC), and val-
idated our classifier using two independent external val-
idation sets from Gene Expression Omnibus (GEO).

Methods
Study population
The training set including 313 OSCC cases were down-
loaded from the TCGA data portal accessed on March,
2016. Tumor sites of oral cavity, oral tongue, buccal mu-
cosa, lip, alveolar ridge, hard palate, and floor of mouth
were included. Patients were diagnosed during 1992–
2013, and those with missing follow-up information
were excluded. Of them, 32 OSCC patients had both

tumor and adjacent non-tumor tissue samples, which
was used as the discovery set to identify differential
methylation CpG sites.
Clinical and DNA methylation data for validation set 1

and set 2 were obtained from GEO [accession number:
GSE52793 [19] and GSE75537 [21]]. One sample in the
validation set 2 were removed due to missing survival in-
formation. Clinical information was described in Table 1.

Preprocessing of DNA methylation chip data
Genome-wide DNA methylation of the training set was
profiled using Illumina Infinium HumanMethylation450
BeadChips Assay. Raw data (level 1 data from TCGA) were
processed using R package minfi version 1.20.0 [22]. Back-
ground subtraction, quantile normalization, and quality
control were performed subsequently. Low-quality probes
were removed if they met the following criteria: (i) failed
detection (P > 0.05) in ≥ 5% samples; (ii) coefficient of vari-
ance (CV) < 5%; (iii) methylated or unmethylated in all
samples; (iv) single-nucleotide polymorphisms (SNPs) lo-
cated in the assayed CpG dinucleotide [23]; and (v) did not
map uniquely to the human reference genome (hg19) [24]
or were on sex chromosomes [25]. Samples with > 5% un-
detectable probes also were excluded. BMIQ normalization
was used for further type I and II probe correction [26].

Table 1 Demographic and clinical characteristics of OSCC patients

Characteristic Training set (N = 313) Validation set 1a (N = 82) Validation set 2 (N = 53)

Censor rate 66.4% 71.9% 71.6%

Age, median years (range) 61.0 (19–90) 58.0 (23–85) 45.0 (28–79)

Gender, n (%)

Male 206 (65.8) 36 (43.9) 11 (20.7)

Female 107 (34.2) 46 (56.1) 42 (79.3)

Smoking status, n (%)

Never 87 (27.8) 30 (36.6) –

Current/former 217 (69.3) 44 (53.7) –

NA 9 (2.9) 8 (9.8) –

Race, n (%)

White 272 (86.9) 79 (96.3) –

Other 31 (9.9) 3 (3.7) –

NA 10 (3.2) 0 (0) –

HPV status, n (%)

Positive 14 (4.5) 9 (11.0) 22 (41.5)

Negative 176 (56.2) 64 (78.0) 16 (30.2)

NA 123 (39.3) 9 (11.0) 15 (28.3)

TNM stage, n (%)

Early (I–II) 88 (28.1) 48 (58.5) 18 (34.0)

Advanced (III–IV) 218 (69.6) 34 (41.5) 35 (66.0)

NA 7 (2.2) 0 (0) 0 (0)

NA not available
aBaseline information of validation set 1 is collected from [19]
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DNA methylation data for validation sets were already
normalized [19]. Quantile normalization was used to
standardize all sample distributions.
Further, ComBat [27] was used to adjust batch effects

among the three datasets using R package sva.

HPV status collection
Human papillomavirus (HPV) status of the training set
was based on the molecular classification, with tumor
samples having more than 1000 reads from RNA
sequencing aligned to HPV sequences, or with evidence
of genomic integrated HPV DNA, deemed HPV-positive
[28]. HPV status of GSE75537 set was based on the
evidence of HPV DNA. Due to the relative high missing
rate, we used multivariate imputation by chained equa-
tions (MICE) to ensure the statistical power [29].

Preprocessing of gene expression data
Level 3 transcriptomic data of the training set were
normalized by RSEM method [30]. All gene expression
values were logarithmic transformed to approximate data
to a normal distribution and then quantile normalized.

Sure independence screening method
The high-dimensional microarray data (> 450,000
probes) in contrast to the small number of cases (< 320)
easily leads to overfitting [31]. Regularized penalized
models such as LASSO can be used to identify import-
ant variables with non-zero coefficients [32]. In this
study, sure independence screening (SIS) was used based
on LASSO Cox penalized regression to identify
candidate CpG sites and to construct a multi-CpG-based
classifier for predicting overall survival [33]. This

two-stage variable screening method is more stable and
reliable and was performed with R package SIS.

Statistical analysis
Continuous variables were summarized as median value
(range), and categorized variables were described by
frequency (n) and proportion (%). Chi-square test was
used for rate comparison. Volcano plot analysis was used
to select CpG sites based on differential methylation value
calculated as mean (βtumor) − mean (βnormal), combined
with paired Student’s t test P values. We used Spearman’s
rank correlation (rs) to explore relationships between
methylation and gene expression. Associations between
characteristics and overall survival were evaluated by Cox
proportional hazard models, while hazard ratio (HR) and
95% confidence interval (95% CI) were described as per
1% methylation increment.
Kaplan-Meier survival curves were drawn and compared

among subgroups using log-rank tests. We predicted overall
survival using the nearest neighbor method for receiver oper-
ating characteristic (ROC) curves of censored survival data
[34]. Estimations of confidence intervals and P values of area
under the curve (AUC) were based on bootstrap resampling.
VanderWeele’s mediation analysis was used to explore

whether the prognostic effect of seven DNA methylation
sites is mediated by affecting corresponding mRNA
expression [35]. Total effect of methylation on survival
(HRtotal) was decomposed to indirect effect (HRindirect)
representing the effect of methylation mediated through
affecting gene expression and direct effect (HRdirect)
indicating the effect of methylation through mediators
rather than regulating the expression.

Fig. 1 Flow chart indicating study design. We identified candidate CpG sites from 32 paired OSCC and adjacent non-tumor tissues by methylation 450k
assay in the discovery set. Then, we excluded a large proportion of CpG sites that were unrelated to survival and developed prognostic scores by SIS. The
seven-CpG-based classifier was validated in two independent datasets. Relationships between methylation and gene expression were also analyzed in the
training dataset

Shen et al. Clinical Epigenetics  (2017) 9:88 Page 3 of 11



Statistical analyses were performed using R version
3.3.0 (The R Foundation). P values were two-sided, and
P < 0.05 was considered statistically significant.

Results
Candidate CpG sites
First, genome-wide differential methylation was identi-
fied from the discovery set of 32 OSCC patients which

had both tumor and adjacent non-tumor tissues (Figs. 1
and 2a). The 1490 CpG sites with an absolute differential
methylation of > 0.4 and paired t test P value of < 1 × 10
−7 were identified (Fig. 2b).
Second, univariate Cox regression was used to evaluate

their association with overall survival in the training set,
which identified 15 CpG sites with P < 0.05. Further, SIS
analysis was performed to further screen out a stable

Fig. 2 Construction of the seven-CpG-based classifier. a Circos plot of epigenome-wide DNA methylation CpG sites. Results are presented as P
values ordered by genomic position, including paired t test of the discovery set (green and red symbols) and univariable Cox regression analysis
of the training set (orange and blue symbols). b Volcano plot comparing CpG methylation for OSCC tumor and non-tumor tissues. A total of
1490 CpG sites had an absolute value of differential methylation of > 0.4 and a paired t test P value of < 1 × 10−7 (blue dots). c Heatmap showing
methylation of 15 CpG sites in tumor tissues and adjacent non-tumor tissues. d Coefficients of CpG sites calculated by univariate Cox regression
and sure independence screening (SIS). After SIS selection, seven probes remained non-zero coefficients
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probe combination. Seven of the 15 candidate CpGs
were identified, including cg13495205, cg07110405,
cg03774514, cg09137696, cg19655456, cg03146625, and
cg21546671 (Fig. 2c, Additional file 1: Table S1), mapped
to AJAP1, SHANK2, FOXA2, MT1A, ZNF570, HOXC4,

and HOXB4, respectively. Using coefficients generated
from Cox model, we calculated a prognostic score for
each patient based on individualized values of the seven
genes (Fig. 2d): prognostic scoremethylation = 0.0054 × cg1
3495205AJAP1 + 0.0318 × cg07110405SHANK2 + 0.0256

Fig. 3 Prognostic signature and OSCC patient survival. Left panels show Kaplan-Meier survival analyses of patients, which are categorized into
low-risk and high-risk groups using a cutoff value of 0.02, for the a training set, b validation set 1, and c validation set 2. P values were calculated
using log-rank test, and HR indicates hazard ratio. Right panels show time-dependent ROC curves of different months used to evaluate patient
survival, with risk score using the nearest neighbor method
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×cg03774514FOXA2+0.0063×cg09137696MT1A+0.0013×c-
g19655456ZNF570 − 0.0297 × cg03146625HOXC4 − 0.0157 ×
cg21546671HOXB4.

Prognostic signature for OSCC patients
We categorized patients into low-risk and high-risk groups
using a cutoff prognostic score of 0.02, which was selected
by the optimum cutoff value according to the highest χ2

value defined by Kaplan-Meier survival analysis and log-
rank test in the training set [36]. As a weighted linear com-
bination model of seven CpG sites, higher prognostic score
was significantly associated with shorter survival in the
training set (HR = 3.23; 95% CI 2.18–4.77; P = 5.52 × 10−10;
Fig. 3a). A significant different proportion of patients in the
low-risk group (23.3%) and high-risk group (54.4%) were
followed until death (χ2 = 28.48; P = 9.45 × 10−8). Results
remained significant after adjustment for HPV status, age,
gender, clinical stage, smoking status, and tumor grade

(HRadjust = 3.14; 95% CI 1.89–5.22; P = 9.57 × 10−6;
Additional file 1: Table S2).
The prognostic signature with the same classifier

cutoff (0.02) were successfully validated in the two valid-
ation sets, respectively. In validation set 1, there was a
2.79-fold higher risk of death for the high-risk group
compared to the low-risk group (HR = 2.79; 95% CI
1.23–6.33; P = 0.010; Fig. 3b). In validation set 2, there
was a 3.69-fold higher risk of death for the high-risk
group compared to the low-risk group (HR = 3.69; 95%
CI 1.25–10.85; P = 0.011; Fig. 3c). After controlling for
HPV status, age, gender, clinical stage, smoking status,
and grade in validation set 2, the results retained statis-
tical significance (HRadjust = 2.96; 95% CI 0.53–7.26;
P = 0.031; Additional file 1: Table S2).
Further, prediction ability of the prognostic signature

was evaluated for 5-year overall survival. Time-
dependent AUCs were 0.76 in the training set (95% CI
0.67–0.82; P < 0.001), 0.67 in validation set 1 (95% CI

Fig. 4 Subgroup and stratification analysis of the seven-CpG-based signature. Subgroup analysis for HPV+ cases (a) and HPV− cases (b) in the imputed
combined dataset. c Kaplan-Meier curves plotting overall survival of the combined three datasets for respective prognostic score categories. d Subgroup
analysis with clinical stage of the combined training set and validation set 2
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0.54–0.78; P = 0.005), and 0.66 in validation set 2 (95%
CI 0.50–0.79; P = 0.030) (Fig. 3a–c, right panels).

Sensitivity analysis for the seven-CpG-based signature
Due to the small sample size of HPV-positive cases, the
training set and validation set 2 were merged to explore
the relationship between the prognostic score and HPV
status. Using multiple linear regression adjusted for age,
gender, stage, smoking status, and grade, the score was
not associated with HPV status (β = − 0.01; 95% CI −

0.23–0.20; P = 0.898). In the subgroup analysis stratified
by HPV status, the seven-CpG-based signature was signifi-
cant both within HPV-positive cases (HR = 3.33; 95% CI
1.07–10.37; P = 0.027; Fig. 4a) and HPV-negative cases
(HR = 2.65; 95% CI 1.73–4.04; P = 5.80 × 10−6; Fig. 4b).
Using the data merged of training and validation sets, as

shown in Fig. 4c, prognostic score showed a stronger asso-
ciation with overall survival (log-rank P = 2.74 × 10−10).
Stratified analyses by clinical characteristics (clinical stage,
age, gender, smoking status, and grade) retained statistical
significance (Fig. 4d and Additional file 1: Figure S2).

Relationship of CpG methylation, gene expression, and
prognosis
Methylation and expression quantitative trait loci
(meQTL) relationship for the seven CpG sites was per-
formed in the training set. Expression and methylation
data were both available in 308 cases of training set (Table
2). Methylation level of CpG sites at the promoter region
and 1st exon region was moderately correlated with the
corresponding gene expression for AJAP1 (rs = − 0.15;
P = 0.009), HOXB4 (rs = − 0.41; P = 6.23 × 10−14), MT1A
(rs = − 0.31; P = 2.39 × 10−8), ZNF570 (rs = − 0.64;
P < 2.20 × 10−16), and SHANK2 (rs = 0.31; P = 2.93 × 10
−8). Methylation of the other two CpG sites located in the
gene body of HOXC4 (rs = − 0.01; P = 0.806) and FOXA2
(rs = 0.05; P = 0.340) was not observed any correlation
with the gene expression (Fig. 5a–g, left panels). These
genes’ expression was also significantly associated with
patient’s overall survival (Fig. 5a–g, right panels).
Prognostic score using the expression of seven genes

was also calculated (scoreexpression = − 0.115 ×
AJAP1+0.089×SHANK2+0.147×FOXA2+0.111×MT1A−-
0.173 × ZNF570 + 0.030 × HOXC4 + 0.789 × HOXB4),
which was significantly associated with the prognosis
(dichotomized by median, HR = 2.20; 95% CI 1.47–3.29;
P = 1.22 × 10−4). After adjustment for HPV status, age,
gender, clinical stage, smoking status, and grade, the
result was still significant (HR = 3.41; 95% CI 1.98–5.89;
P = 1.07 × 10−5) (Additional file 1: Figure S3). In addition,
it effectively predicted 5-year survival (AUC = 0.65; 95%
CI 0.54–0.72; P = 0.001) (Fig. 5h, left panel).
Combination of clinical information, expression, and

methylation data (AUC = 0.78) showed a superior
prediction ability in comparison to the model using clin-
ical data only (AUC = 0.53) or clinical and expression
data (AUC = 0.67) (Fig. 5h, right panel).
Furthermore, VanderWeele’s mediation analysis was used

to explore the underlying mediation pathway of methyla-
tion, mRNA expression, and overall survival (Fig. 6a). Scor-
eexpression, the linear combination of seven genes’ mRNA
expression, was treated as mediator in the overall mediation
model. The prognostic effect of methylation signature was
significantly mediated through affecting their mRNA

Table 2 Clinical characteristics of the training set with both
methylation and mRNA data

Characteristic Subset of training set with both DNA methylation
and mRNA expression data (N = 308)

Censor rate 66.9%

Age, median years
(range)

61.0 (19–90)

Gender, n (%)

Male 206 (66.9)

Female 102 (33.1)

Smoking status, n (%)

Never 84 (27.3)

Current/former 216 (70.1)

NA 9 (2.6)

Race, n (%)

White 267 (86.7)

Black or African
American

20 (6.5)

Asian 10 (3.2)

American Indian
or Alaska Native

1 (0.3)

NA 10 (3.2)

HPV status, n (%)

Positive 13 (4.2)

Negative 175 (56.8)

NA 120 (39.0)

TNM stage, n (%)

I 12 (3.9)

II 75 (24.4)

III 64 (20.8)

IV 150 (48.7)

NA 7 (2.3)

Grade, n (%)

G1 48 (15.6)

G2 193 (62.7)

G3 63 (20.5)

NA 4 (1.3)

NA not available
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expression (HRindirect = 1.08; 95% CI 1.02–1.15; P = 0.008;
proportion mediated, 11.27%). Sensitivity analysis by ex-
cluding each gene expression from scoreexpression retained
statistical significance (Fig. 6b).

Discussion
Cancer involves a complex regulatory network, integrating
multiple biomarkers into an aggregated model could im-
prove prognostic value compared with single biomarker
[37]. The biomarkers discovery for OSCC have been

reported in several studies [38, 39], but few of them used
more than two datasets or explore the biomarkers across
different omics. In this study, we developed an OSCC
prognostic classifier model that includes seven CpG sites
and validated the model using two independent external
datasets. Results show that the prognostic signature was
significantly associated with OSCC patient overall survival
and had certain prediction abilities in the three datasets
tested. OSCC patients with higher prognostic scores
tended to have poorer clinical outcomes. Further, the gene

Fig. 5 Association between gene expression and methylation. Left panels show correlation of a AJAP1, b SHANK2, c FOXA2, d MT1A, e ZNF570, f HOXC4,
and g HOXB4 expression (X-axis) with methylation (Y-axis). Right panels show Kaplan-Meier survival plots of gene expression from the TCGA cohort. HR
indicates hazard ratio. Correlation coefficients and hypothesis tests were based on Spearman rank correlation tests. Patients were categorized into high-risk
and low-risk groups by an optimum cutoff point according to the highest χ2 value. h ROC curves for expression of the seven genes (left) and combinations
of different types of data (right), including clinical characteristics (Clin), gene expression (Exp), and methylation (Methy)
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expression of the corresponding CpG sites were also asso-
ciated with overall survival. The integrated model of
methylation and expression could add prognostic predict-
ive value based on the clinical information (e.g., HPV
status, age, clinical stage, and grade).
We used a three-step selection method to screen out

significant biomarkers from more than 320,000 CpG sites
after quality control. Differential methylation analysis
using paired tissue data as the first step excluded 99.5% of
probes. To exclude probes unrelated to survival, we evalu-
ated their prognostic values by univariable Cox regression
as the second step. However, the Cox model is not suitable
for accurate modeling due to the low sample size/variable
ratio and unstable variable combination [40]. To over-
come the problem, SIS, a method based on a LASSO
penalized model, was used to select a more stable and reli-
able set of CpG sites for further modeling. It first screened
all included variables and discarded the irrelevant features
with weak correlation to overall survival, then applied
LASSO to estimate sensitivity from the selected genomic
instability data [41].
The Cancer Genetics Web [42] suggests that research

on OSCC biomarkers is still not comprehensive enough.
Our study provides seven significant prognostic genes at
the epigenetic and transcriptomic levels. Among the

seven genes corresponding to candidate CpG sites, six
have been reported as cancer-related genes. AJAP1, a
novel tumor suppressor gene, is associated with survival
in esophageal squamous cell carcinoma [43], hepatocel-
lular carcinoma [44], and glioma [45]. Demethylation of
hypermethylated AJAP1 reactivates its mRNA expression
[43]. SHANK2 might cooperate with EMS1 to encode
cytoskeleton-associated proteins implicated in tumor cell
motility and invasiveness in OSCC [46]. It is also hyper-
methylated in prostate cancer tissues compared with
paired non-tumor tissues [47]. FOXA2 is implicated in
increased relapses and risk prognostic value in triple-
negative/basal-like breast tumors [48]. Conversely,
FOXA2 also is downregulated in lung cancer through
epigenetic silencing of hypermethylation [49]. Further
experiments are needed to verify the function of FOXA2
in OSCC. MT1A, which regulates cell growth and differ-
entiation, has been described as a hypermethylated CpG
biomarker for OSCC [50]. MT1A overexpression is also
associated with HNSCC [51]. HOXC4 and HOXB4 are
hypermethylated and downregulated in high-risk groups,
and hypermethylation of HOXB4 is inversely correlated
with decreased expression as an epigenetic biomarker
for OSCC [52]. In addition, HOXC4 triggers similar mo-
lecular alterations as HOXB4 [53] and also is involved in

Fig. 6 Mediation analysis for methylation prognostic signature through mRNA expression. a Diagram of mediation model. b Methylation signature from
the seven CpG sites was treated as “exposure”; mediator was the linear combination of the corresponding seven genes’ expression level (scoreexpression)
(Overall model). Total prognostic effect in hazard ratio (HR) were described as direct effect (HRdirect), indirect effect (HRindirect), corresponding 95%
confidence interval (95% CI), and the proportion of effect mediated (M%). Further, sensitivity analyses were performed by excluding each gene from
scoreexpression, respectively, which retained statistical significance for mediation effect
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some cancers [54, 55]. ZNF570 belongs to the large zinc
finger gene family, which has been reported that is use-
ful in the detection of HNSCC [56]. Although this gene’s
function is still not known well, we measured a strong
negative correlation of ZNF570 methylation and expres-
sion, both of which were significant in patient prognosis.
Therefore, additional experiments are required; ZNF570
may represent a novel OSCC biomarker.
In addition to DNA methylation, mRNA expression

levels of seven genes also affect prognosis significantly.
Around 11% of methylation prognostic effect is medi-
ated through affecting corresponding gene expression.
Interestingly, most of the methylation’s effect may act,
beyond affecting expression, but gene function [57],
which warrants further functional experiments.
However, our study has some limitations. First, base-

line information for GEO validation set 1 is unavailable,
so multivariable analysis could not be made in the valid-
ation phase for this dataset. Second, due to the small
sample size of some groups in the stratification analysis,
like the HPV-positive cases, the results should be taken
with caution since the sample size is insufficient. Third,
further studies are needed to verify the biological func-
tion of some genes.

Conclusions
This study suggests that the developed seven-CpG-based
signature coupled with gene expression is a useful and
practical tool to improve prognostic value and survival
prediction of OSCC, indicating it may have new applica-
tions for appropriate clinical adjuvant trials. Future stud-
ies including these molecular methylation and/or gene
expression biomarkers, HPV status, age, other clinical
characteristics, and different therapy effects will be
useful for developing future personalized treatments.

Additional file

Additional file 1: Table S1. Annotation for seven CpG sites selected by
SIS. Table S2 Cox regression analysis of clinical characteristics and risk
scores. Figure S1. Boxplot depicting beta-values of seven CpG sites after
ComBat processing in training and validation datasets. Figure S2. Kaplan-Meier
survival analyses of patients subgrouped by (A) age divided by median value
(60 years), (B) gender, (C) smoking status, or (D) grade. Figure S3. Kaplan-Meier
survival analyses of the gene expression prognostic score. Low-risk and high--
risk patients were divided by the median value. (DOCX 832 kb)
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