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Abstract

The need for research investigating DNA methylation (DNAm) in clinical studies has increased, leading to the
evolution of new analytic methods to improve accuracy and reproducibility of the interpretation of results from
these studies. The purpose of this article is to provide clinical researchers with a summary of the major data
processing steps routinely applied in clinical studies investigating genome-wide DNAm using the Illumina
HumanMethylation 450K BeadChip. In most studies, the primary goal of employing DNAm analysis is to identify
differential methylation at CpG sites among phenotypic groups. Experimental design considerations are crucial at
the onset to minimize bias from factors related to sample processing and avoid confounding experimental variables
with non-biological batch effects. Although there are currently no de facto standard methods for analyzing these
data, we review the major steps in processing DNAm data recommended by several research studies. We describe
several variations available for clinical researchers to process, analyze, and interpret DNAm data. These insights are
applicable to most types of genome-wide DNAm array platforms and will be applicable for the next generation of
DNAm array technologies (e.g., the 850K array). Selection of the DNAm analytic pipeline followed by investigators
should be guided by the research question and supported by recently published methods.
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Background
Epigenetic changes, among which DNA methylation
(DNAm) is frequently studied, are increasingly being
considered as potential contributors to disease processes
or to serve as biomarkers for patients at risk of develop-
ing disease [1]. Clinical research conducted to identify
biological mediators associated with an increased risk
for disease suggest that epigenetic modifications may be
involved in virtually any complex disease [2]. In contrast
to genetic mutations that arise infrequently in somatic
cells and tend to be relatively static, epigenetic modifica-
tions are plastic. As a result, these alterations may be
amenable to clinical interventions and could lead to the
development of new treatments [3]. In recent years,
there has been a proliferation of translational clinical
research utilizing data produced by high-throughput
technologies that are capable of measuring epigenomic

modifications across the genome [4]. Generally speaking,
high-throughput technologies allow for the simultaneous
measurements of thousands of DNA features (e.g., CpG
sites) in a more rapid, reproducible, and cost-effective
manner than assessing each feature individually. These
genome-wide platforms have the advantage of obtaining a
snapshot of the cellular state and have revolutionized
the genome sciences by facilitating hypothesis-generating
studies to complement more direct hypothesis testing.
The Illumina Infinium HumanMethylation450 BeadChip
(450K) is the most commonly used tool to assess genome-
wide DNAm according to the Gene Expression Omnibus
Database [5], and the technical details of this technology
have been previously published [6]. Best practices for de-
signing whole-genome DNAm experiments have also been
published [7–9]. The purpose of this review is to provide
an accessible summary of the major data processing
steps routinely applied in clinical studies investigating
genome-wide DNAm using the 450K array. Although
DNAm technology continues to change at a rapid pace,
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the information in this review will be applicable to the
next generation of DNAm array technologies [10].

Review
Measurement of genome-wide DNAm
DNAm is a chemical modification to DNA that adds a
methyl group to cytosines that are adjacent to guanine
nucleotides, referred to as CpG sites, which may result
in changes to gene expression without altering the DNA
sequence [11]. The relationship between this chemical
modification and health conditions has been increasingly
studied, and several investigators report associations be-
tween the degree of methylation in a genomic region in
disease states or in response to environmental exposures
[1, 12]. DNAm across the genome can be assayed using
either microarrays or specialized whole-genome sequencing
(WGS) protocols. In both approaches, DNA samples are
first treated with sodium bisulfite, which converts unmethy-
lated cytosines to uracil, while methylated cytosines are un-
affected. Microarrays measure DNAm using thousands of
oligonucleotide probes that each target a specific genomic
location [6]. WGS provides comprehensive coverage of
DNAm sites; however, it has a much higher cost and many
investigators have elected to use less expensive modern
DNAm arrays for initial surveys of DNAm in epidemio-
logical samples [13].
The most frequently used microarrays for measuring

DNAm are manufactured by Illumina. The first Illumina
methylation microarray, referred to as the 27K array, in-
terrogated 27,578 sites across the genome. For this array,
two probes were used for each locus to separately iden-
tify methylated and unmethylated CpG sites. The next
major methylation platform released by Illumina was the
Infinium Human Methylation450 BeadChip microarray,
which measures 485,512 CpG sites, the majority of which
are localized to regions that potentially could regulate gene
expression and therefore are of possible clinical relevance
(99 % of the sites are localized to genes that have been well
characterized in RefSeq or sites outside of genes that are
likely to regulate gene expression, such as promoter re-
gions) [6]. In addition to the dual-probe approach used in
the 27K array, which is referred to as a “type I” probe, the
450K array incorporates “type II” probes to expand CpG
site coverage. The type II probes use two differentially “col-
ored” (using fluorochromes) channels for each locus, one
that is specific for methylated and one for unmethylated
CpGs, with these channels being distinguished from one
another by a single-base mismatch.
Signal processing for all array-based technologies re-

quires a multi-step analysis protocol to obtain consistent
and reproducible results [14, 15]. For example, the 450K
array has values for type I probes (135,476 sites), as well as
type II probes (350,036 sites), the latter of which measure
both methylated and unmethylated CpGs (using two color

channels, as noted above) [6]. Technical differences in the
probe designs result in less efficiency for detecting vari-
ance in DNAm in the type II probes when compared to
type I probes, especially at the ends of the probe intensity
distribution (Fig. 1a). As a result of the “hybrid” two-assay
(type I and type II probes) design of the 450K array, re-
searchers have developed several statistical approaches to
normalize variance between the probe types and reduce a
potential source of bias in results favoring one probe type
over another [16–20]. Signals for both probe types are fre-
quently summarized as a beta value representing a ratio of
the average signal for methylated alleles to that of the total
of the methylated and unmethylated alleles for biological
interpretation [6].
The goal of this methods review is not to describe the

technical details of data analysis approaches but rather
to outline the major steps/considerations in the experimen-
tal design and processing of raw data into interpretable
DNAm values. By understanding the analytic pipeline, a
clinical researcher will be better able to plan and communi-
cate project goals as well as have appropriate expectations
related to the interpretation of results. Software for all
methods presented can be obtained through the free and
open-source R statistical computing environment [21] and
Bioconductor [22] (cran.r-project.org and bioconductor.
org). A selection of popular DNAm packages have been
reviewed elsewhere [16, 20]. These R and Bioconductor
resources have become the de facto software for methods
development in this area by an expert community of re-
searchers who continually introduce and upgrade analytic
“packages” by taking advantage of R’s highly extensible
platform. A summary of the data processing steps de-
scribed in this review is listed in Table 1.

Overview of DNAm array analysis pipeline
DNAm analysis software
Illumina provides a default application called GenomeStu-
dio to analyze their various microarray technologies, which
includes a DNAm module. Being graphical user interface
(GUI)-based (i.e., point and click), GenomeStudio is
relatively easy to use and provides convenient methods
for generating common visualizations. However, its data
processing capabilities are limited, and it lacks support for
the more cutting-edge and effective analysis methods.
We recommend analyzing DNAm data using the free

and open-source R programming language [21]. R was
designed specifically to facilitate statistical computing
and provide a highly extensible platform upon which
novel methods could be easily built and distributed as “R
packages.” R has become the data analysis tool of choice
in a wide range fields and is the de facto tool in genomics
research largely due to the Bioconductor project, which
provides hundreds of R packages for analyzing genomic
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Fig. 1 a Density of DNAm intensity by probe type. Infinium I and II assays display different β-value distributions (0 indicating unmethylated sites,
1 indicating fully methylated sites), which may lead to results that contain an over-representation of type I probes due to the larger variance of
type II assays. This figure shows the distribution of β-values that were obtained from a single peripheral blood specimen collected for women
diagnosed with breast cancer. Differences in between probe types (visualized at the ends of the distributions (type I probes—red dotted line;
type II probes—blue dotted line)) are adjusted using normalization procedures, which attempt to harmonize the differences in distributions
between probe types. b Density of DNAm intensity by the experimental group. The quality of the data for each specimen can be readily visualized
using a density plot, which enables one to compare distributions between, for instance, cases and controls in order to identify particular specimens
with deviations in their distribution, the latter of which may serve as an indication that the specimen results are of poor quality
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data [22]. All methods presented here are freely available
as R packages published by Bioconductor [16, 20].
A significant benefit to using R is the enhanced repro-

ducibility it provides over GUI-based applications. As in
any programming language, analyses are performed by
writing and executing scripts. These scripts are effect-
ively self-documenting, providing a step-by-step record
of what was done. When performing analyses as multifa-
ceted as those described here, where each step can have
significant downstream consequences, methodological
transparency is critical for results to be reproducible. R
also provides methods for implementing analyses within
a “dynamic document” where analytical code and exposi-
tory text are combined within a single document, which
enhances reproducibility and facilitates communicating
results [23].

Sample filtering
The 450K array contains several different types of control
probes to assist in determining the quality of the array
experiment. For example, these metrics include probes
to assess bisulfite conversion efficiency and background
fluorescence levels and have been designed to help the
investigator identify “wet lab” experimental steps that
might have been completed sub-optimally [15]. In gen-
eral, control probe intensity values that fall outside of
the clustering of values for other samples could indi-
cate a compromised/failed sample. We have found that
the method proposed by the R minfi [24] package provides
a reasonable and straightforward assessment of sample
quality that oftentimes corresponds to the aforementioned
deviation in control probes. In this method, samples of

good quality tend to group together based upon clustering
the log median intensities of the raw methylated values
against those of the unmethylated values for each array,
and poorer quality arrays will tend to deviate towards
lower median values in both dimensions [24]. Addition-
ally, a comparison of beta value density plots (Fig. 1b)
from an experiment can identify poor performing arrays
based on a large deviation from the rest of the samples.
However, care should be taken to decide whether homo-
geneity of beta value distributions should be assessed
within experimental classes insofar as the observed differ-
ences may have biological relevance and reflect expected
deviations that are not related to technical artifact (i.e.,
cancer versus control samples).

Probe filtering
Probe filtering provides the opportunity to eliminate
specific CpG probes that do not meet quality control
standards or fulfill study objectives. Standard filtering
approaches include eliminating probes with (1) intensity
levels at or near background intensity; (2) poorly repre-
sented CpG sites; and (3) variable target sequences. The
450K array includes over 600 negative control probes,
which can be used to estimate background intensity
levels. Probes with intensity values that are not statisti-
cally greater than this background value (frequently, a
P value >0.01) could be unreliable and considered as
failed probes. One approach for probe-specific filtering is
to remove probes that fail to measure DNAm in a speci-
fied proportion of the total samples (e.g., 10–25 %). Each
CpG locus on the 450K array is targeted by a specific
probe sequence affixed to a bead, with the median number

Table 1 Major steps in the 450K array analysis pipeline

Analysis Rationale

Sample filtering Experimental samples are compared to control probes present within the array technology to identify
samples that fail to adequately detect DNAm. Samples with poor detection may be inaccurate, due to
poor sample quality, and thus might be considered for exclusion from the dataset.

Probe filtering Raw data must past initial quality and data screening. Probes failing to meet preset detection values
and/or failed probes are removed from analysis because they are unreliable (see text). For example,
some probes may cross-hybridize or overlap with SNPs, which could confound results. Study aims
should be considered when determining which probes to remove.

Within-array normalization This step removes “background” noise and corrects for technical dye-based (red/green), intensity,
and probe type (I/II) differences within the array technology.

Batch effects The step assesses and accounts for variation that is not caused by biological differences but by external
variation (e.g., samples are processed on different days or at different facilities).

Cell composition Whole blood contains multiple cell types with potentially different DNAm profiles. As different samples
may contain varying proportions of cell types, statistical methods have been developed to estimate and
correct for this cellular heterogeneity.

Differential DNAm positions and regions Currently, many analytic pipelines assess for DNAm differences in both specific positions and broader
regions. DNAm positions interrogated on the array are not evenly distributed, and both differentially
methylated positions and regions may yield clinically meaningful results.

Biological and clinical interpretation Various approaches may be necessary for accurate interpretation of differential methylation between
groups. Tools for functional and regulatory enrichment analyses are available. Manual exploration
of the literature and validation in a second cohort or by another method (e.g., bisulfite sequencing)
remains as viable options for interpretation.
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of beads per locus being 14, which are randomly distrib-
uted across the array. A filtering criterion can be used to
identify probes that have failed to hybridize if a minimum
of three beads are not detected on the array [16]. Probes
located where the DNA sequence contains known single
nucleotide polymorphisms (SNPs) are also often excluded
from statistical analysis because these SNPs can disrupt
probe binding at the site and artificially lower intensity
signals [6, 17, 25]. If SNP sites are not removed from
the analysis, one could encounter difficulties interpret-
ing differences in measured DNAm values at these sites
since these differences could reflect a variation in DNA
sequence (e.g., C/A SNP variation) or true DNAm dif-
ferences. If sequence variation can be validated in the
study, further analysis can be completed to evaluate the
relative contribution of DNAm differences by variant
type (i.e., SNP versus DNAm).
The research objectives and experimental design of a

study should dictate the appropriate filtering strategy to
be used. For instance, the removal of Y chromosome
probes may be indicated for investigations restricted to a
study of only females. Yet, for most applications, a con-
servative approach is usually adopted by omitting probes
with SNPs that fall at the CpG target or at the single-
base extension sites. In addition to SNPs, CpG probes
located near short insertions and deletions, and probes
that map to multiple locations on the genome, may also
produce results that are difficult to interpret and should
be removed if there are no plans to validate these findings
within the present study [17, 26].

Within-array normalization
The observed probe intensity level can be broken down
into component parts consisting of measurement of the
true intensity level (i.e., “signal”) and intensity measure-
ment due to technical artifacts (i.e., “noise”). Increasing
the signal to noise ratio by reducing variation due to ex-
traneous sources is an essential step in the processing of
all microarray platforms. For the 450K design, the pri-
mary adjustments required pertain to three technical
variations: (1) non-specific background fluorescence; (2)
red/green dye bias; and (3) rescaling for probe type (I/II)
differences [16]. More advanced model-based back-
ground correction methods take advantage of the 450K
array technology to measure the intensity level of type I
probes outside of their specified color band (N = 135,501
probes) and have been shown to be superior to subtract-
ive methods that rely exclusively on the negative probes
(N = 42) [15, 27]. The normal-exponential convolution
using out-of-band probes (noob) method has been
shown to provide a comprehensive background correc-
tion and dye normalization and sufficiently scale type I
and II probes to make the beta values for these probe
comparable [15]. Other artifacts to consider include

spatial heterogeneity across individual arrays and the
BeadChip slide [27] and non-specific binding due to
cross-hybridization [28]. While there is no consensus
framework for handling this technical variation, several
investigators have compared potential solutions for stat-
istical adjustment and assessment [29, 30].
The 450K array can be viewed essentially as two arrays

each with a different probe chemistry (i.e., type I and II
as described above). As noted earlier, Fig. 1a displays the
characteristic bimodal distribution of beta values with
modes near the fully methylated (β = 1) and unmethy-
lated (β = 0) extremes. The shift in peaks corresponding
to probe type is primarily due to assay sensitivity. These
differences can have downstream effects on analysis
since the type II probes show a smaller range of beta
values and exhibit larger variance between repeated
measures compared with the type I probes [20, 25]. This,
along with the fact that placement of probes differ in
functional regions, could lead to a biased detection of
differentially methylated regions enriched for type I
probes. A large amount of attention has been focused on
the rescaling of probe distributions to make them com-
parable and several options exist [31–35]. One approach
that has been used to address this problem is to apply
quantile normalization, such as the version adapted for
the 450K array in the minfi R package [24, 32]. The
major assumption underlying this method is that only
modest changes are expected between experimental clas-
ses. An assumption free normalization procedure, such
as Funnorm [34], is an alternative method that can be
used to address this issue and has strength for evaluating
specimens where a global DNAm shift is expected, such
as in the case of cancer to normal sample comparison
studies. Developers frequently publish detailed compari-
sons of methods (new versus existing) with analysis of
downstream effects, and several reviews can be found
within the following references [16, 24, 28, 30–36].

Batch effect analysis and correction
Data produced by microarray technologies, like the
450K array, are susceptible to batch-to-batch variation
[37–39]. Batch effects have been identified as a major
confounding factor in genome-wide DNAm studies, espe-
cially when batch group is correlated with the outcome of
interest, such as change over time [37]. The term “batch”
refers to a grouping of samples that undergo an experi-
mental processing step in tandem, potentially introducing
DNAm differences that reflect differences between batches
and not in experimental factors of interest. This pervasive
batch influence is almost unavoidable for samples col-
lected over a large period of time [37]. In the extreme case,
if all control samples are run in the same batch and the
intervention group run in a separate batch, significant dif-
ferences in results between groups could merely be due to
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the average effect of extraneous factors unique to each
batch [40]. A batch effect can conceivably be introduced
at a number of points during specimen processing and
sample analysis.
The most common type of batch effect is observed

when experimental procedures necessitate the processing
of samples in separate groups or on different days. This and
other similar sources of technical artifact can be minimized
by carefully randomizing experimental groups across array
processing steps. The effects of known batches can be, if
necessary, controlled for in downstream analyses through
appropriate statistical modeling insofar as the experimental
group and batch membership are not completely con-
founded. Yet, it is still possible that an unobserved batch
structure can exist. Several methods are available to correct
for unobserved batch effects, which take advantage of
the large number of measurements obtained by high-
throughput technologies to identify and test for the
presence of unobserved correlation structure [39, 41].

Cell composition correction
DNAm can vary by cell type and can confound analysis
when pooled samples are being investigated. For example,
peripheral blood samples, which are comprised of several
different cell types (albeit with some of the types in small
proportions (less than 5 to 10 % of cells)), are frequently
used for identifying DNAm differences in clinical popula-
tions [42]. As DNAm signatures are different among cell
types, a sample with abnormal cell-type proportions (e.g.,
an abnormally high eosinophil count caused by an allergy)
may result in the identification of significant DNAm differ-
ences due merely to differences in cell-type proportions
present in the specimen, the latter of which may not be re-
lated to the health condition being evaluated in the investi-
gation. Statistical corrections can be performed to estimate
heterogeneity of cell types found in peripheral blood based
on DNAm previously identified in purified blood cell lines
[42]. Research evaluating DNAm in other mixed cell tissues
(e.g., placenta), where a specific cell type has not been iso-
lated prior to analysis (e.g., syncytiotrophoblasts), can be
adjusted for cell-type heterogeneity using recent innova-
tions in reference-free approaches such as EWASher [43]
and RefFreeEWAS [44].

Calculation of differentially methylated positions and
regions
The statistical analysis of high-throughput DNAm tech-
nology presents challenges that are similar to other high-
throughput technologies (e.g., GWAS and gene expression
microarrays), as well as those unique to the 450K array
technology. The results of numerous DNAm studies have
reported a strong correlation of DNAm levels at neighbor-
ing CpG sites that decrease as pairwise distances increase
[37, 45, 46]. This spatial correlation can be due to both

coordinated DNAm change and measurement errors. Re-
cently, investigators have taken advantage of this structure
by developing analytic strategies to discover differentially
methylated regions (DMR) composed of multiple signals
across individual CpG positions (differentially methylated
positions (DMP)) [37, 46–50]. It has been shown that the
identification of regional differences across several probes
provides more robust findings and is more likely to be
replicated than individual CpG differences [46, 51]. Yet,
the identification of DMRs using the 450K array remains a
challenge due to the sparse and non-uniform placement of
probes on the array (see Fig. 2). For instance, the “bump
hunting” procedure of Jaffe and colleagues [37], designed
for the high-density CHARM platform, would only be
applicable to approximately 20 % of the 450K array
[46]. Additionally, since most DMR methods estimate
significance using permutation-based methods, these
approaches are not easily extended to more complex
experimental designs and custom algorithms are required
[46]. It is recommended that both DMR and DMP ap-
proaches be run in tandem since, as mentioned previously,
probes are not evenly spaced across the genome and a sig-
nificant proportion of CpG sites are not positioned within
even 1 kb of a neighboring site.
Another consideration when performing statistical

tests includes the transformation of beta values to M-values
(logit beta values) to promote normality and reduce the
heteroscedasticity at extreme beta values [52]. Additional
innovations, such as independent filtering, can be used to
improve statistical power and reduce the multiple testing
burden in high-dimensional data [53, 54]. Although
region-based analyses (e.g., DMR) can be considered a
data reduction technique, it is unlikely that it will elimin-
ate the need for a multiple-test correction to reduce the
false discovery rate [8, 20, 55].

Biological and clinical interpretation
The interpretation, or recognition of biological relevance
of differential DNAm, is arguably the most important
step concluding the well-planned bioinformatics analysis
of 450K data [56]. This step may be used to reveal po-
tential mechanistic underpinnings of clinically relevant
information (e.g., disease processes). There are several
interpretation-oriented approaches aimed at understand-
ing the biological and clinical significance of DNAm
data. These include comparing results to other publically
available datasets, using functional enrichment analysis
to determine functions, comparing results to canonical
pathways enriched in genes associated with DMRs, and
investigating the regulatory context (e.g., histone modifi-
cation signatures and transcription factor binding sites)
of the loci enriched in DMRs.
Comparing the results of DNAm analysis to other

publically available datasets stems from a commonly
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accepted view that genetic similarity correlates with
phenotype similarity [57, 58]. This approach has been
particularly well developed in gene-centric studies to
predict functions of unannotated genes based on co-
expression patterns [59–61]. Less attention has been
paid to comparing patterns of DNAm, although numer-
ous dedicated databases of DNAm experiments exist
[62–64], including the well-known Gene Expression
Omnibus (GEO, [5]). The DNAm pattern matching ap-
proach for interpretation of newly acquired DNAm data
remains confined to individual bioinformatics cores but is
expected to gain wider popularity as the pre-processing
steps for DNAm data obtained with 450K technology will
be better standardized.
The functional enrichment analysis is a well-established

method to reveal biological roles of differentially expressed
genes [65, 66]. Owning to the fact that the 450K array is

designed to interrogate the methylation status of CpG
sites in proximity to genes, the functional enrichment ana-
lysis is scalable to the interpretation of DMRs through
mapping them to the nearby genes. Thus, the functional
enrichment analysis generally is performed on DMRs lo-
calized within genes, as well as nearby genes. The mapping
step is usually achieved by associating the probe ID
numbers of each differentially methylated CpG site with
gene names using a manufacturer-provided mapping
(“manifest”) file. If a CpG site maps to several nearby
genes, one may elect to use all these genes. After selecting
genes mapped to DMRs, the functional enrichment
analysis can be performed using standard tools, such as
DAVID [67], ToppGene suite [68], or GSEA [69]. The
functional enrichment analysis of genes mapped to
DMRs is a way of obtaining biologically meaningful in-
sights into molecular mechanisms, biological processes,

Fig. 2 Visualization of DMR and DMP results overlapping genomic annotations. This example figure, which was created from 450K data for
peripheral blood specimens that were collected from women diagnosed with breast cancer, demonstrates how both experimental results and
predicted functional elements can be viewed as individual tracks along a set of genomic coordinates (x-axis) specified along a gene (e.g., the
FKBP5 gene (bottom track)). The top track displays the statistical model coefficient from a univariate test to identify individual DMPs, and the plot
rug (along the x-axis) indicates significant (black tick) findings. The identified DMRs (second track) correspond to clusters of DMP results with
similar coefficient values and in this example overlap CpG islands (third track) and predicted promoter regions (fourth track). These regions also
correspond to other publically curated annotations that, for instance, can indicate enrichment for different chromatin states (fifth track)
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and canonical pathways potentially affected by DNAm
differences.
In interpreting DMR data, it is important to note that

a gene-centric analysis of DMRs is an approximation in
that it operates under the hypothesis that DMRs affect
nearby genes. However, if a CpG site maps to multiple
nearby genes, it may be difficult to know which gene is
truly regulated by the methylation differences at this
CpG site. Given recent availability of functional/regula-
tory genome annotation data provided by the ENCODE
[70] and Roadmap Epigenomics [71] projects, an alterna-
tive and/or complimentary approach is to evaluate the
regulatory context of the DMRs. This approach, termed
“regulatory enrichment analysis,” is similar to the gene-
centric functional enrichment analysis in that it evaluates
co-localization enrichment of DMRs in different types of
regulatory datasets, e.g., gene promoter region, chromatin
state [72] (Fig. 2). Given the large volumes of genome an-
notation data, the regulatory enrichment analysis methods
are less well developed than functional enrichment ana-
lysis methods. However, tools like GenomeRunner [73],
Enrichr [74], and GoShifter [75] have been successfully ap-
plied to the interpretation of DMRs identified with 450K
technology in studies of autoimmunity [76, 77] and aging
[78, 79]. These examples illustrate a variety of methods
available for the interpretation of the biological meaning
of differentially methylated regions associated with clinical
phenotypes.

Additional considerations
Clinical researchers should maintain realistic expecta-
tions for the interpretation of results based on the initial
research question, characteristics of the study population
under investigation, and the tissue/cells being measured
[80]. As described in this review, DNAm variability can
be composed of both biological and technical sources
and, despite careful experimental design, cannot all be
fully accounted for without additional experimentation
that may be outside the scope of the current project. For
example, the 450K microarray technology cannot, at
present, distinguish between hydroxymethylation and
DNAm, unless samples undergo a different processing
step prior to DNAm quantification [81, 82]. Nor is the
microarray technology sensitive enough to detect single-
cell DNAm differences and may have limited interpret-
ability for imprinted regions without further laboratory
validation of DNAm at specific loci. For example, known
regions of allelic imprinting by parent of origin tend to
have monomorphic distribution of beta values (i.e., beta
value of 0.5) [33] and require interrogation via other
methods if determining allele-specific methylation is the
project goal. Lastly, the 450K microarray technology has
been show to be reproducible across other platforms (e.g.,
r = 0.88 with pyrosequencing [6, 83]), although confidence

in research findings can be increased by validating findings
using an alternate approach and/or by evaluating plausible
downstream products such as concomitant changes in
gene expression [8].

Conclusions
Advances in research methods utilizing new technologies
that produce large amounts of data, like the 450K array, are
increasingly being used to improve our understanding of
various disease processes. Clinical researchers are uniquely
poised to accelerate the translational arm of research by
using these types of technologies to improve our under-
standing of disease risk, better estimate disease prognosis,
and make more personalized therapeutic decisions. How-
ever, the processing and statistical analyses of these data are
complex. To ensure accurate translation and clinical
applications, researchers must be aware of how these data
are processed and analyzed. The analytic pipeline is a foun-
dational process to ensure data quality, reliability, and re-
producibility of reported findings. Streamlined approaches
are available that automate a number of steps described in
this review and can serve as a starting point for less experi-
enced users [16, 56, 84]. This review provides a summation
of the essential analytic steps that clinical researchers will
need to consider when planning and reporting findings
from DNAm studies using the 450K array and can serve as
a “prequel” to more in-depth, helpful reviews on specific
methods that are available (e.g., [16, 20, 36]).
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