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Abstract

Cardiovascular diseases (CVD) increasingly burden societies with vast financial and health care problems. Therefore,
the importance of improving preventive and therapeutic measures against cardiovascular diseases is continually
growing. To accomplish such improvements, research must focus particularly on understanding the underlying
mechanisms of such diseases, as in the field of epigenetics, and pay more attention to strengthening primary
prevention.
To date, preliminary research has found a connection between DNA methylation, histone modifications, RNA-based
mechanisms and the development of CVD like atherosclerosis, cardiac hypertrophy, myocardial infarction, and heart
failure. Several therapeutic agents based on the findings of such research projects are currently being tested for use
in clinical practice. Although these tests have produced promising data so far, no epigenetically active agents or
drugs targeting histone acetylation and/or methylation have actually entered clinical trials for CVDs, nor have they
been approved by the FDA. To ensure the most effective prevention and treatment possible, further studies are
required to understand the complex relationship between epigenetic regulation and the development of CVD.
Similarly, several classes of RNA therapeutics are currently under development. The use of miRNAs and their targets
as diagnostic or prognostic markers for CVDs is promising, but has not yet been realized. Further studies are
necessary to improve our understanding of the involvement of lncRNA in regulating gene expression changes
underlying heart failure. Through the data obtained from such studies, specific therapeutic strategies to avoid heart
failure based on interference with incRNA pathways could be developed.
Together, research and testing findings raise hope for enhancing the therapeutic armamentarium. This review
presents the currently available data concerning epigenetic mechanisms and compounds involved in cardiovascular
diseases, as well as preventive and therapeutic approaches against them.
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Background
In the western world, cardiovascular disease is the most
common cause of human morbidity and mortality. Ex-
penses for the treatment of cardiovascular disease to the
European health care system are presumed to be as high
as 200 billion Euros each year [1].
In the USA, the overall rate of deaths attributed to

cardiovascular disease (CVD) in 2011 was 229.6 per
100,000 Americans [2]. Thus, CVD still accounted for
31.3 % (786 641) of all 2,515,458 deaths in the USA [2].
Based on the death rate data from 2011, more than 2150

Americans die of CVD each day, which equals an aver-
age of one death every 40 s [2]. The cardiovascular dis-
ease epidemic is rapidly spreading throughout the world.
There are estimates that in 2030, nearly 23.6 million
people will die from CVD worldwide [3, 4]. Due to an
aging population and shifting risks posed by the environ-
ment, this burden is expected to increase in developing
countries. In these countries, diets are changing to in-
clude higher sodium and fat content. The majority of
the fatalities caused by CVD are, however, preventable
[5, 6]. According to epidemiological and clinical studies,
lifestyle modifications to nutrition and exercise can be
initial protective measures to reduce CVD risk [7, 8].
In addition, mortality rates are higher and prognoses

are generally worse in patients with diabetes suffering a
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cardiovascular event [9]. As a consequence of better pri-
mary and secondary prevention, there is a decrease in
cardiovascular events in type 1 and type 2 diabetic pa-
tients, as well as an increased life expectancy. Never-
theless, epidemic bursts of obesity in connection with
decreased physical activity and increased survival in the
general population have also led to a higher incidence of
type 2 diabetes worldwide. This in turn contravenes the
decrease in diabetes-related mortality that would other-
wise increase significantly in the coming decades [9].
Despite the improvement of cardiovascular outcome

and survival of heart failure patients through strategies
of classical pharmacological treatment (e.g., the use of
beta-blockers and angiotensin-converting enzyme (ACE)
inhibitors), such therapies are ultimately unable to pre-
vent further progression of the disease itself [10]. Thus,
a more thorough understanding of underlying mecha-
nisms, in the field of epigenetics, for instance, and the
development of innovative and more effective therapies
for heart diseases is necessary.

Review
Epigenetic alterations in gene expression may be
achieved through changes in the tertiary structure of a
DNA strand. Without altering the DNA sequence itself,

epigenetic alterations in the form of chromatin-based
modifications affect only the expression of the targeted
genes [11]. Among these modifications are the methyla-
tion of DNA, the posttranslational modification of his-
tone proteins, and RNA-based mechanisms [12]. The
development of therapeutic strategies has been strongly
encouraged by the reversible nature of such epigenetic
alterations, as they allow direct targeting by various epi-
genetic components [11].
Preliminary research has shed light on the correlations

between DNA methylation, histone modifications, and
RNA-based mechanisms with CVD including athero-
sclerosis, heart failure, myocardial infarction, and cardiac
hypertrophy. Currently, several therapeutic agents based
on these mechanisms are being tested for their potential
utility in clinical practice [13]. Although much data have
been accumulated so far, no epigenetically active agents
have entered clinical trials for CVD. Research on the po-
tential use of epigenetically active compounds to treat
these pathologies is, thus, only preliminary.
In the following, the currently available data concerning

epigenetic mechanisms and compounds involved in car-
diovascular diseases will be presented. The assignment of
the discussed substances to different mechanisms of ac-
tion is shown in Fig. 1. It has to be differentiated between

Fig. 1 Potential epigenetic mechanisms (DNA methylation, histone alteration, RNA-based mechanisms) and compounds involved in cardiovascular
disease. ACE angiotensin-converting enzyme, ANRIL anti-sense non-coding RNA, ANRIL anti-sense non-coding RNA in the INK4 locus, ASA acetylsalicylic
acid, ASOs anti-sense oligonucleotides, CHD coronary heart disease, CVD cardiovascular disease, DAC 5-aza-2-deoxycytidinedemethylating agent, DNMT
DNA methyltransferase, eNOS endothelial nitric oxide synthase, FENDRR FOXF1 adjacent non-coding developmental regulatory RNA, HAT
histone acetyltransferase, HDAC histone deacetylase, lncRNA long non-coding RNA, miRNA microRNA, NO nitric oxide
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the mechanisms of DNA methylation, histone modifica-
tion, and RNA-based mechanisms.

DNA methylation (Fig. 1)
The methylation of DNA is regulated by DNA methyl-
transferases (DNMT1, DNMT3a, and DNMT3b) in the
presence of S-adenosyl-methionine; this is the methyl
donor for methylation of cytosine residues at the C-5
position to yield 5-methylcytosine [14, 15]. DNA methy-
lation states regulate biological processes underlying
CVD, such as atherosclerosis, inflammation, hyperten-
sion, and diabetes [16–19].
One DNA methyltransferase (DNMT) inhibitor is 5-

aza-2-deoxycytidinedemethylating agent (DAC), which
induces the reexpression of hypermethylated silenced
genes which might include the reexpression of hyper-
methylated estrogen receptor (ER) alpha and ER beta in
normal smooth muscle and endothelial cells. The failure
of estrogen therapy to exert cardioprotective effects
might be explained by the silencing of ERs in women
that result from epigenetic changes. Thus, CVD may be
prevented successfully through the combined use of epi-
genetic and hormone replacement therapy [13].
Studies in humans have shown that certain dietary com-

pounds can modulate the status of DNA methylation [13].
As one of the largest and most ubiquitous groups of phy-
tochemicals, polyphenols are contained in fruits, vegeta-
bles, and other dietary components including green tea,
red wine, and cocoa [20, 21]. Various studies have indi-
cated a connection between a polyphenol-rich diet and a
reduced risk of CVD [13, 22–24]. Polyphenols are believed
to be the principal anti-inflammatory mediators. Inflam-
mation is a cardiovascular risk factor in and of itself, while
all other cardiovascular risk factors can, in turn, be linked
back to inflammation [25, 26].
One of the main sources of polyphenols in the human

diet are cocoa products. The protective capacity of these
cocoa polyphenols in connection with CVD inflamma-
tion has been the target of many human intervention
studies [27].
Cocoa polyphenols possess a range of cardiovascular

protective properties and can play a meaningful role by
modulating different inflammatory markers involved in
atherosclerosis [27]. Numerous population studies found
a correlation between cocoa intake (e.g., chocolate) and
reduced CVD risk [13], as well as an inverse association
between cocoa intake (e.g., chocolate) and CVD mortal-
ity [22, 28–30]. In the study by Janszky [29], however,
the occurrence of uncontrolled confounders could not
be excluded. Furthermore, the patients were only asked
about their general chocolate consumption without a
differentiation between dark and milk chocolate.
Substantial evidence suggests that the consumption of

cocoa has an effect on multiple cardiovascular risk

factors, such as blood pressure [31], lipid profiles [32],
and flow-mediated vascular dilatation [27, 33]. Neverthe-
less, analytical works like that by Jia and colleagues also
have their limitations [32]. For one, the quality of the
studies included in their meta-analysis varies signifi-
cantly: Based on the standard for clinical trials of pre-
scribed medicine, only three of the eight trials discussed
were high-quality studies (Jadad score ≥4), while the
other five studies were of low quality. This suggests that
more high-quality, large, randomized, and double-
blinded studies are necessary to secure data on this
issue. Additionally, the effectiveness of long-term cocoa
supplementation on the lipid profile could not be sup-
ported by any reports. While human and animal experi-
ments show that the effect of cocoa is indeed dependent
on pretreatment concentrations of cholesterol, to date,
the effect of cocoa in dyslipidemia patients has not been
tested in randomized trials. These studies only tested
soft endpoints, meaning cholesterol changes from base-
line and not clinical outcomes of the treatment.
The report by Hooper et al. [34], on the other hand, is

the first systematic assessment of the effectiveness of the
range of flavonoid subclasses and flavonoid-rich food
sources on CVD risk factors based on randomized con-
trolled trials [34]. Nevertheless, the review lacks quanti-
fying approaches to the effects of flavonoid-rich food
and extracts on CVD risk factors, as it does not include
studies assessing their effects on CVD. In addition, it
fails to provide sufficient well-designed studies of risk
factors for most flavonoids. The small number and size
of the included studies, as well as significant differences
of the baseline levels of specific outcomes between inter-
vention and control arms in parallel studies, the missing
report of a paired t test in crossover studies, and a var-
iety of studies based on missing or poorly reported data
present further weaknesses of the review. The methodo-
logical validity of the review is similarly problematic,
mostly due to its lack of evidence concerning adequate
allocation concealment, its blinding procedures, the
similarity of intervention and control arms in terms of
saturated fat intake and the predominance of industrially
funded studies, as well as possible reporting bias.
Altogether, this may lead to an exaggerated image of ef-
fectiveness [35]. Where Hooper et al. present evidence
on the effectiveness of flavonoid-rich food, it is unclear
whether the flavonoids themselves solely or partially
cause the observable effects, or whether other bioactive
components are responsible for the same [34].
Cocoa extract has been found to inhibit the expression

levels of genes encoding DNMTs and methylenetetrahy-
drofolate reductase (MTHFR) in vitro [20]. Polymor-
phisms in the MTHFR gene have been found to be
possible risk factors for a variety of common conditions,
e.g., heart disease.
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Cocoa polyphenols decrease the susceptibility of
low-density lipoprotein (LDL) to oxidation and inhib-
ition of platelet activation and aggregation [36–40]. In
addition, cocoa polyphenols affect the most significant
markers of CVD: lipid profiles [36, 41], blood pres-
sure [31, 42, 43], hemostasis [44–46], and endothelial
dysfunction [47–49].
The study by Faridi et al. [49] is the first to examine

how sugar-free cocoa acutely affects endothelial function
and blood pressure, but it also has its limitations. For one,
the findings apply to acute cocoa ingestion only. The mea-
surements of endothelial function are limited to a single
time point, which makes them prone to neglect temporal
and maximal differences. In addition, since plasma cat-
echin concentrations were not measured, it is unclear
whether effects could be attributable to these components
or not. Moreover it remains uncertain whether the ob-
served effects were exclusively caused by the deliberate in-
terventions, as the study lacked in dietary information and
control of its subjects. The homogeneous population of
the study, consisting mainly of white women concentrated
around the Naugatuck Valley, finally allows only limited
generalizations of its findings.
It is well known that alterations in plasma cholesterol

levels (LDL-c and high-density lipoprotein (HDL-c)) are
related to the progression of atherosclerosis and CVD
[50]. Studies have shown dietary interventions with
cocoa powder in mild hypercholesterolemic patients to
significantly lower levels of LDL-c [51], while the level of
HDL-c was increased in normo- and mild hypercholes-
terolemic patients after consuming dark chocolate or
cocoa powder [37, 51, 52].
In addition, cocoa polyphenols have an effect on nitric

oxide (NO) [27, 35, 47]. After consuming cocoa bever-
ages which contained different contents of flavanols,
healthy subjects exhibited an increase in their plasma ni-
tric oxide.
Folic acid and B vitamins, other kinds of DNMT inhib-

itors, directly supply the one-carbon-metabolism with
methionine for the production of S-adenosylmethionine
[53]. A deficiency in folic acid leads to global DNA hy-
pomethylation which correlates with an increased risk of
cancer and cardiovascular diseases, such as atheroscler-
osis, coronary heart disease (CHD), and anemia [54–56].
Yang et al. [56] tried to avoid limitations of meta-

analyses, like search comprehension and selection, the
accuracy of study methodologies, and publication bias,
by maximizing study identification and minimizing
biases through an a priori development of the study
protocol, a profound survey of several databases, and the
definition and execution of explicit criteria for the selec-
tion of applicable studies, data collection, and data ana-
lysis. As a positive result, the results of the included
trials did not exhibit any substantial heterogenities.

Vitamin B complex (folic acid and vitamins B6 and
B12) substitution therapy leads to a decreased plasma
homocysteine level [57]. Folic acids themselves are ne-
cessary to methylate homocysteine (Hcy) to methionine.
Low serum levels of folic acid have furthermore been
connected to increased serum levels of Hcy [13]. Hcy
serum levels are increased through the common C677T
variant in MTHFR. The risk of CVD increases 14–21 %
in individuals with the homozygous TT genotype [58].
Daily dietary supplementation with folic acid and B vita-
mins reduces plasma Hcy levels, which in turn decreases
the risk of CVD in healthy subjects or improves the like-
liness of survival in patients with CHD [59]. This is,
nevertheless, a controversial effect, as the reducing Hcy
concentrations has not proven to be beneficial in the
majority of clinical studies. Although folic acid supple-
mentation shows a potentially modest benefit in stroke
prevention, it does not seem to exhibit benefits in con-
nection with preventing CHD and CVD [56, 60]. On the
contrary, a meta-analysis indicated a potential detrimen-
tal effect of folic acid in subjects with high baseline Hcy
[60, 61]. However, the study by Miller et al. [60] is lim-
ited by (i) differences in the composite clinical end
points between trials and in CVD risk factors for trial
participant-based eligibility criteria; (ii) an inconsistent
and incomplete discussion of baseline homocysteine
level results that preclude a more detailed assessment of
interactions; and (iii) neglecting that subgroup effects
and potential interactions may occur solely by chance.
Homocysteine is a serious, independent risk factor for

atherosclerosis [57]. Vascular complications and an in-
creased cardiovascular risk in connection with increased
circulation levels of homocysteine may, as various stud-
ies indicate, be caused by the methylation of DNA [62].
It is assumed that lowering plasma homocysteine levels
will result in a decreased risk of CVD [13].
Nevertheless, recent large randomized studies (VISP,

NORVIT, and HOPE-2) [63, 64] could not conclude that
this is actually the case. These studies, particularly
“NORVIT” and “VISP,” have specific deficiencies: The
“NORVIT” study did not include vitamin deficiency and
increased homocysteine levels as inclusive criteria. Al-
though a preventive effective of vitamins can only be ex-
pected after 3 years [65], this study also considered
secondary findings that were observed immediately after
a cardiac event. Folic acid levels in the placebo group of
this study, for instance, rose from an initial 9.6 to
13.1 nmol/l, similar to the verum group. This suggests
that over time, the placebo group may have become
nonexistent. Furthermore, Walk et al. suggest that a sta-
tistically sound evaluation of the effects of decreasing
homocysteine levels through secondary prevention
would have required the observation of ca. 20,000 pa-
tients over a period of 5 years [65]. The “VISP” study, on
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the other hand, only used high-dose and a low-dose vita-
min groups, but no placebo group [66]. Incidentally, in
1998, the USA and Canada passed a law on the enrich-
ment of wheat products with folic acid, which would
have falsified and thus annihilated the further examin-
ation of folic acid deficiencies in test subjects [66].
Moreover, Rajan et al. concluded from a study published
in 2002 [67] that their high-dose group was still not re-
ceiving enough vitamin B12 to compensate an insuffi-
cient gastrointestinal resorption of the vitamin, which
led to a further blurring of the results between the low-
dose and high-dose groups.
The polyphenol resveratrol (RESV) is a DNMT inhibi-

tor found in various plants, including grapes, berries and
peanuts [68], and in processed foods such as red wine
[69]. It modulates the expression of several targets, such
as sirtuin 1, p38 mitogen-activated protein kinase
(MAP38 kinase), nuclear factor “kappa-light-chain-en-
hancer” of activated B cells (NF-κB), activating protein-1
(AP-1), endothelial nitric oxide synthase (eNOS), as well
as inflammatory cytokines, like tumor necrosis factor
alpha and interleukin-6 and interleukin-8, as well as vas-
cular cell adhesion molecule-1 (VCAM-1) and intercel-
lular adhesion molecule-1 (ICAM-1) [13, 70]. Metabolic
disorders, chronic heart disease, and inflammatory dis-
eases can be improved by resveratrol through its upregu-
lation of SIRT1 in endothelial cells [70]. Resveratrol also
possesses a number of bioactivities, such as antioxidant,
anti-inflammatory, and cardioprotective effects [69].
In vitro, RESV has exhibited the ability to enhance the

activity and expression of eNOS [68]. It was also found
to prevent an increase in vasoconstrictors, like angioten-
sin II and endothelin-1, as well as intracellular calcium,
in mesangial cells [69]. Antioxidative effects of resvera-
trol on low-density lipoproteins (LDL) were identified by
Frankel et al. in 1993 [71].
In conclusion, unaltered epigenetic regulation path-

ways like DNA methylation and posttranslational chro-
matin modifications constitute the basis of a healthy
cardiovascular system. To date, many studies have
shown the possibilities and positive effects of treatment
with epigenetic modulators.

Histone modification (Fig. 1)

1. Histone acetyltransferase (HAT) modification

The HAT inhibitor curcumin (diferuloylmethane) is a
polyphenol present in a curry spice exhibiting a diverse
range of molecular targets, such as growth factors and
their receptors, transcription factors, enzymes, cyto-
kines, and genes regulating cell proliferation and
apoptosis [13].

Curcurmin modulates epigenetic factors [72] and has ef-
fects on the regulation of histone deacetylases, histone
acetyltransferases, DNA methyltransferase I, and miRNAs
[72]: Out of the various studies that have been conducted
on the effects of curcumin on histone deacetylase (HDAC)
expression, Bora-Tatar et al. [73] found that from among
33 carboxylic acid derivatives, curcumin proved the most
effective HDAC inhibitor and, as such, even more potent
than the well-known HDAC8 inhibitors valproic acid and
sodium butyrate. HDAC 1, 3, and 8 protein levels can be
significantly decreased by curcumin [73–76].
To the contrary, HDAC2 was activated, restored, and

increased in its protein expression by curcumin [77, 78].
Obviously, the different effects of curcumin on the

various subtypes of HDAC enzymes indicate the neces-
sity of further research to secure an understanding of
the exact relationship between curcumin and HDAC ex-
pression [72].
Curcumin is furthermore a potent HAT inhibitor. It

inhibits p300 [79–86], inhibits GCN5 associated with
hypoacetylation of histone H3 [87], and inhibits GCN5
associated with hypoacetylation of histone H3 [87].
The fact that curcumin modulates both HDAC and

HAT suggests a common underlying mechanism. Oxida-
tive stress can, for instance, activate NF-κB through the
stimulation of intrinsic HAT activity, which results in
the expression of pro-inflammatory mediators, but it can
also inhibit HDAC activity [88]. Curcumin as an antioxi-
dant may similarly influence both acetylation and deace-
tylation by regulating oxidative stress [72].
Nevertheless, only a few studies have investigated the

effect of curcumin on the methylation of DNA [72]. For
one, it seems to covalently block the catalytic thiolate of
DNMT1 in order to exert its inhibitory effect on DNA
methylation [89]. This previous understanding was how-
ever thwarted by a more recent study that showed no
curcumin-dependent demethylation, which in turn sug-
gests that curcumin has little or no pharmacological
relevance as a DNMT inhibitor [90]. These contradic-
tions and other inconsistencies about the influence of
curcumin on DNMT point to the urgency of further re-
search in this area [72]. Additionally, curcurmin is known
to covalently block the catalytic thiolate of C1226 of DNA
methyltransferase I [89] and to induce global genomic
DNA hypomethylation [89].
Further, Sun et al. [91] found that curcumin altered

miRNA expression in human pancreatic cancer cells, in
which miRNA-186 and miRNA-199a were the most
downregulated and miRNA-22 was the most upregulated
[72, 92]. This curcumin-induced upregulation simultan-
eously suppressed the expression of its target genes Sp1
and estrogen receptor 1 [91].
Curcumin also downregulates the activation of nu-

clear factor kappa-light-chain-enhancer of activated B
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cells (NF-κB) by various tumor promoters, including
phorbol ester, tumor necrosis factor, and hydrogen
peroxide [93, 94]. Curcumin-induced downregulation
of NF-κB is mediated through the suppression of the
activation of IκBα kinase (IKK) [93].
Protective effects of curcurmin on the cardiovascular

system have been demonstrated [95]. In fact, the admin-
istration of curcumin to healthy volunteers and patients
with atherosclerosis has proven to significantly lower
LDL levels and increase HDL levels [96, 97]. Both a rat
model of heart failure and primary cultured rat cardiac
myocytes and fibroblasts have shown curcumin to pre-
vent ventricular hypertrophy and to perpetuate systolic
function [98]. In rat cardiomyocytes, curcumin seems to
act through two or more mechanisms at once: through
the inhibition of histone acetylation and hypertrophy-
responsive transcription factors, including GATA bind-
ing protein 4 (GATA4), as well as through the disruption
of p300/GATA4 complex [99].
In human subjects, studies indicated that acetylsali-

cylic acid (ASA) therapy reduces ABCA1 DNA methy-
lation levels that are independent from aging and
CHD status of patients, which suggests that this mo-
lecular mechanism is involved in the pathophysiology
of CHD and thus points towards new therapeutic
strategies [100].

2. HDAC modification

The sirtuin 1 protein (SIRT1) is a member of the class
III NAD+-dependent histone deacetylases. These sir-
tuins, and particularly SIRT1, participate in the response
to DNA damage, metabolism, longevity, and carcinogen-
esis. Furthermore, different cellular processes, such as
differentiation, proliferation, and apoptosis through dea-
cetylation of important regulatory proteins such as p53,
FOXO3a, and NF-κB, are regulated by SIRT1.
The activity and expression of human SIRT1 can be

activated or inhibited by various modifiers, including
food and cosmetic additives. Agents such as L-thyroxin
and sodium nitroprusside frequently used in clinical
practice were identified to be potent activators of
human SIRT1 expression [101]. The exposure of
euchromatin-associated epigenetic marks to T3 induces
SIRT1 by enhancing histone acetylation and RNAP II
recruitment [102].
Furthermore, the treatment of peripheral blood mono-

nuclear cells (PBMCs) with sodium nitroprusside has
been associated with a high increase in cellular lifespan,
while L-thyroxin was unable to prolong lifespan, which
suggests that an isolated upregulation of SIRT1 is insuf-
ficient to promote longevity [101]. Perhaps these agents
can be used in everyday clinical practice for indications
with a tolerable number of side effects [103–106].

Thyroid hormones can contribute to cardiac repair and
regeneration through the reactivation of developmental
gene programming [107] and can have important effects
on heart remodeling through mir-208 [108]. Thyroid hor-
mones have been identified as independent determinants
of functional recovery and mortality after myocardial in-
farction [107]. Concerning the potential for therapeutic
measures, thyroid hormones as an agent contributing to
the regeneration or repair of the ischemic myocardium
are awaiting testing in clinical trials [109].
Sodium nitroprusside is a medical agent that belongs

to the class of cyanides. It is highly efficient in decreas-
ing blood pressure and exerts vasodilating activity
through release of nitric oxide (NO) in smooth muscle
cells and the vessel wall. NO is thus a vasodilator that
mediates multiple physiological and pathophysiological
activities in the cardiovascular system and protects
against the development of atherosclerosis [13].
The signaling molecule nitric oxide is produced in

endothelial cells by eNOS [110]. eNOS, which is
encoded by the gene NOS3, catalyzes the generation of
NO from L-arginine in blood vessels [111]. NOS3 is the
best-characterized endothelial gene in association with
cardiovascular physiology [13]. Endothelial dysfunction
is primarily characterized by a reduction in eNOS ex-
pression and the bioavailability of NO [112]. This reduc-
tion, which takes place in the neointimal coverings of
advanced atheromatous plaques, is a prominent feature
of endothelial dysfunction [113–116].
A variety of risk factors contributes to dysfunction of

endothelial cells through changes in eNOS expression
and activity [113–116]: Both transcriptional and post-
transcriptional mechanisms controlling eNOS mRNA
levels have been associated with the same [117–120].
The differential expression of eNOS is, furthermore,
caused by such hemodynamic forces at characteristic re-
gions within the vasculature as arterial curvatures and
bifurcations [113].
Additionally, hypoxia is known to significantly

downregulate NOS gene expression in endothelial cells
[13, 121] in association with a post-transcriptional down-
regulation of eNOS mRNA expression [122, 123]. Post-
transcriptional regulation of eNOS mRNA stability is an
important component of eNOS regulation, especially
under hypoxic conditions [110].
The expression of eNOS is induced and directly up-

regulated by SIRT1 [124]. SIRT1 may also be related
to the inhibition of oxidized low-density lipoprotein
(oxLDL)-induced apoptosis and the improvement of
endothelial relaxation [124]. Due to these mechanisms,
SIRT1 is considered an anti-atherosclerotic factor [124].
The activation of SIRT1 is thus an important innovative
therapeutic target in future treatment strategies of cardio-
vascular disease [125, 126].
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NO insufficiency—e.g., in atherosclerosis, hypertension,
arterial thrombotic disorders, heart failure, coronary
heart disease, and stroke [11, 17, 127–134]—may reflect
an absolute deficit of NO (synthesis), impaired availabil-
ity of bioactive NO, or enhanced NO inactivation. A
broad spectrum of pharmacotherapeutics in cardiovas-
cular medicine works on either the replacement or aug-
mentation of endogenous NO through exogenously
administered NO donors.
For decades, clinical practice has used several NO do-

nors (e.g., nitroglycerin and nitroprusside), for instance to
treat hypertension and heart failure [135]. Due to their
therapeutic half-life, systemic absorption with potentially
adverse hemodynamic effects, and drug tolerance, con-
ventional nitrate compounds are limited in their treat-
ment applications [17, 127]. Novel NO donors offering
selective effects, a prolonged half-life, and a diminished
incidence of drug tolerance have been developed to
overcome these limitations.
Calcium channel blockers, e.g., dihydropyridine cal-

cium channel antagonists, have been a common treat-
ment of angina pectoris and hypertension for years
[136]. They act through inhibiting the smooth muscle L-
type calcium current, which decreases the intracellular
calcium concentration and induces smooth muscle re-
laxation. Dihydropyridine can, furthermore, initiate the
release of NO from the vascular endothelium [136].
Angiotensin-converting enzyme (ACE) inhibitors are

cardiovascular agents that modulate endogenous NO bio-
activity. ACE degrades bradykinin [137] and generates
angiotensin II; bradykinin, in turn, has exhibited the
ability to stimulate the endothelium to release vasodilat-
ing substances, in particular NO. By increasing bradyki-
nin, ACE inhibitors may thus enhance the release of
endothelial NO. It has been shown that ACE inhibitors
exert some of their beneficial pharmacological effects by
increasing vascular NO activity [138–140].
β-blockers may also obstruct the NO pathway [135].

Nebivolol, a β1-blocker and chemical racemate contain-
ing equal proportions of D- and L-enantiomers [141],
for instance, reportedly induces endothelium-dependent
arterial relaxation in dogs in a dose-dependent manner
[142]. The endothelium-dependent relaxation caused by
nebivolol is abolished by N-nitro-L-arginine methyl
ester, an inhibitor of NO synthase [135].
Dysfunction of histone acetylation has been associated

with the pathogenesis of chronic heart failure. Lujiao, an
agent that is long known in traditional Chinese medi-
cine, has previously been used in the treatment of heart
failure [143]. This medicine has been considered a po-
tential therapy for hypertrophic cardiomyocytes on his-
tone acetylation [143].
Histone deacetylase (HDAC) “inhibitors attenuate

pathological cardiac remodeling and hypertrophic gene

expression; yet, the direct histone targets remain poorly
characterized” [144]. There are studies suggesting “a
mechanism for cardioprotection subject to histone dea-
cetylation as a previously unknown target, implicating
the importance of inflammation by pharmacological
HDAC inhibition” [144].
HDAC inhibitor trichostatin A (TSA) is an anti-fungal

antibiotic agent that is being produced by Streptomyces
platensis that selectively blocks class I and class II
HDACs in mammals, but not class III HDACs [145].
TSA is known to be an epigenetic modulator [146] and
HDAC inhibitor [146]. Although TSA decreases both
eNOS protein and mRNA levels, TSA paradoxically en-
hances the activity of the eNOS promoter and does not
alter the eNOS transcription rate in nuclear run-on ex-
periments. This suggests that TSA post-transcriptionally
targets eNOS mRNA. eNOS expression in ECs seems to
be regulated partly by HDAC-dependent mechanisms
[147]. Furthermore, trichostatin A treatment increases
the expression of (encoding estrogen receptors) ERa and
ERb in endothelial cells [13]. Encoding estrogen recep-
tors ERa and ERb (ESR1 and ESR2, respectively), athero-
protective genes are consistently hypermethylated in
human coronary atherosclerotic tissues and plaque re-
gions of the ascending aorta [13]. Both smooth muscle
cells and endothelial cells exhibit ERs in the coronary ar-
terial wall which may protect against atherosclerosis, es-
pecially in CHD. Deficiencies in ERa have proven to
accelerate atherosclerosis in human subjects [133]. The
risk of cardiovascular diseases can be reduced about 30
to 50 % by estrogen substitution [148].
In vivo studies in animals have shown treatment with

trichostatin A to improve functional myocardial recovery
after myocardial infarction. Treatment of myocardial in-
farction with trichostatin A has proven to increase
angiogenesis [13]. It can hence be concluded that HDAC
inhibition may lead to the preservation of cardiac per-
formance and mitigate myocardial remodeling through
the stimulation of endogenous cardiac regeneration [149].
HDAC inhibition has furthermore been shown to enhance
the formation of myocytes and microvessels in the heart.
Due to its ability to stimulate angiogenesis, HDAC inhib-
ition is capable of minimizing the loss of myocardial per-
formance following myocardial infarction [13].
Statins are used as primary and secondary prophylaxis

against atherosclerosis and cardiovascular incidents
[150]. They also act as a first-line treatment to decrease
serum cholesterol levels in patients with high cholesterol
[13] (e.g., polygenetic hypercholesterolemia or familial
hypercholesterolemia but also combined hyperlipidemia)
by inhibiting 3-hydroxy-3-methylglutaryl coenzyme A
(HMG CoA) reductase [135].
In addition, statins have many pleiotropic effects.

Among these are beneficial effects on endothelial function
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and blood flow, decreased LDL oxidation, enhanced ath-
erosclerotic plaque stability and decreased proliferation of
vascular smooth muscle cells and platelet aggregation, as
well as reduced vascular and atherosclerotic inflammation,
which is caused by histone modifications and an inhibited
release of pro-inflammatory cytokines [13].
They may furthermore possess antioxidant properties

[151] and be able to upregulate eNOS activity and ex-
pression (via the inhibition of Rho) [135]. Through the
induction of hypoxia and oxidized LDL, statins reverse
the downregulation of eNOS expression [152], which
may ultimately be the reason for their ability to improve
the vascular bioactivity of NO [153] and atherosclerotic
plaque stability [17, 154]. These various effects are likely
to be highly significant in the setting of chronic statin
therapy as a primary and secondary prevention measure
of coronary heart disease [135].
Although statins are usually well-tolerated, side effects

such as myopathy occur in approximately 10 % of patients
receiving treatment [155] and a number of patients are
statin resistant (estimates of up to 20 %) or intolerant.
Thus, new therapies are necessary to reduce the residual
disease burden in these patient populations [156].

RNA-based mechanisms (Fig. 1)

1. miRNA therapeutics

MicroRNAs (miRNA or miR) are short (20–22 nucleo-
tides) non-coding RNAs [157] modulating gene expres-
sion further by downregulating the translation of target
mRNAs through the inhibition of post-transcriptional
events, through transcript degradation or through direct
translational suppression [13, 156]. Estimates based on
computational approaches currently find more than
60 % of human genes to be targeted by miRNAs, with
many of these interactions being highly conserved
throughout evolution [158].
In mammals, more than 1000 different miRNAs have

been described. Among these are cardiac miRNAs,
which, as studies indicate, can potentially be modulated
by oligonucleotide-based therapies (Table 1) [10, 13, 107,
156, 159–181].
miRNAs may possibly be used as diagnostic bio-

markers of, e.g., heart disease [182], as they have been
found in the serum and plasma of humans and animals
and are highly significant in the pathogenesis of cardio-
vascular diseases. miRNAs qualifying as biomarkers are
circulating miRNA-126 and miRNA-145, which are re-
duced in the serum of patients with coronary artery
disease [183], and miRNA-1, miRNA-133b, and miRNA-
499, which are elevated in patient and animal models
during acute myocardial infarction [184, 185].

Biological gene networks may be altered by a dysregu-
lation of miRNAs in disease states. miRNA replacement
therapy or anti-sense inhibition of miRNAs may aid in
restoring gene expression in the cell to its normal state.
In the same way, gene networks, such as those control-
ling key cellular processes like cholesterol efflux, can be
targeted by miRNAs, making their characteristic modu-
lation of entire gene pathways instead of single targets a
new approach for the treatment of disease [156]. The
ability to target single miRNAs and to alter the expres-
sion of gene networks provides an exceptional approach
to drug development that moves beyond the “one-drug-
one-target” mode of treatment.
miRNA therapeutics bear great potential for developing

new CVD treatments. Preclinical studies already prove
this through early successes with miRNA inhibitors and
mimics [156]. As such, a number of RNA-based therapeu-
tics are currently being developed by biotechnological
companies. Among these innovations are miRNA (micro-
RNA) sponges, miRNA mimetics, anti-miR oligonucleo-
tides, and anti-sense oligonucleotides (ASOs) [156].
miRNA sponges are molecules developed to inhibit intra

cellular miRNAs [186] and thus act as competitive inhibi-
tors of the respective miRNA. The sponge binds to the
miRNA of interest to prevent the latter from binding to
its targets. Difficulties in determining the appropriate dos-
age may prove to be a disadvantage of this approach. A
highly expressed miRNA, for instance, may require a
potentially unfeasible dose of sponge to be silenced,
whereas an abundance of miRNA target genes would
need a much lower dose of sponge to silence the
miRNA [156].
miRNA mimetics are small, chemically modified double-

stranded RNAs mimicking the function of an endogenous
miRNA. They are delivered as perfect complementary du-
plexes to improve RNA-induced silencing complex (RISC)
loading of miRNA [187]. Their efficiency can furthermore
be enhanced by increasing the affinity for a specific target
and reducing other unwanted miRNA effects [188].
Anti-miR oligonucleotides, chemically modified to en-

hance target affinity, stability, and tissue uptake, are a
promising approach [189]. Preclinical studies in mice
and non-human primates have shown that these com-
pounds rapidly leave the plasma upon systemic delivery.
After entering these cells, the anti-miR forms a stable,
high-affinity bond with the miRNA, which reduces the
availability of the same to bind with the 3′UTR of the
miRNA target [156]. Chemically modified anti-miRs have
proven to be therapeutically beneficial in mouse models of
cardiac dysfunction [156].
ASOs are single stranded, short, synthetic 14–22 nt

highly specific, complementary oligonucleotides that
localize to the nucleus and target a single gene through
the interruption of mRNA translation. This in turn is
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Table 1 Mechanisms, clinical relevance, targets and development of microRNA-based therapeutics by companies

Mechanisms and clinical relevance Target(s) Development of microRNA-based
therapeutics by companies

References

miR-208 1. Inhibition of miR-208a prevents cardiac remodeling
2. Role in cardiac fibrosis not yet fully identified

p21 x [10, 107]

miR-33 1. Targets genes involved in HDL metabolism. Preclinical
models in which anti-miR-33 was delivered for up to 12
weeks have shown no adverse effects of the approach
(assessed by liver enzymes, plasma cytokine levels, blood
chemistry panels, blood counts, body weight)
2. Directly target macrophages and cause a regression
of atherosclerosis

ABCA1, ABCG1, AMPK alpha, CPT1A, CROT,
HADHB, IRS2, NPC1, PRKAA1, SREBP-1

Anti-miR oligonucleotide against
miR-33a/b for treating atherosclerosis
and dyslipidemia

[156, 160, 179]

miR-146 Pathogenesis and clinical manifestation of atherosclerosis CD40L, IRAK1, IRAK2, TLR4, TRAF6 [180, 181]

miR-15 family (including
miR-15, miR-16, miR-497)

Associated with cell cycle arrest and survival by
regulating anti-apoptotic and cell cycle genes

CARM1 Anti-miR towards miR-15 for post-
myocardial infarction remodeling of
the heart. An 8-mer (nucleotide)
directed against the seed region of
the miR-15 family: more effective in the
derepression of target genes than the
previously used LNA-modified 16-mer

[161, 162]

miR-23a, miR-23b, miR-24,
miR-195, miR-214

Overexpression of these microRNAs causes hypertrophy
in human cardiomyocytes

CDC42 (miR195) anti-miR towards miR-195 for post-
myocardial infarction remodeling of
the heart.

[161–163]

Overexpression of miR-195 in the heart is a sufficient
cause for heart failure

Transgenic miR-195 mice may develop dilated
cardiomyopathy

miR-133 Overexpression of miR-133 inhibits cardiac hypertrophy SP1 [163, 164]

miR-34 The response of the heart to stress, including myocardial
infarction, leads to an upregulation of miR-34. Involved
in cardiac hypertrophy and fibrosis

SIRT1 LNA-modified anti-miR against
miR-34a aimed at improving systolic
pressure and increasing angiogenesis

[165]

miR-29 miR-29 is implicated in cardiac fibrosis and is
downregulated after myocardial infarct and after
cardiac injury

LPL (miR-29a) Development of a pro-miR to target
multiple components of the fibrosis
pathway

[166]

DNMT3B (miR-29b)

miR-21 miR-21 levels in cardiac fibroblasts lead to a decrease in
its target mRNA, sprouty-1 (Spry1), a negative regulator
of ERK-MAP kinase activity, as well as fibroblast growth
factor-2 (FGF2) secretion

BCL-2, PDCD4, ASO to miR-21 in order to elevate
Spry1 expression, to reduce FGF2, and
therefore to decrease fibroblast growth

[167–169]

PPARalpha,

PTEN, TPM1, TLR4 Anti-miR-21 may help treat a variety of
fibrotic conditions, including cardiac
fibrosis

miR-155 miR-155 has been implicated in viral myocarditis. An
LNA-anti-miR directed against murine miR-155 reduced
myocardial damage during myocarditis

AT1R, ETS-1, MLCK, BCL-2, ETS-1, FADD,
HBP1, MAP3K10

x [13, 170–173]

The inhibition of endogenous miR-155 has clinical bene
fit for both cardiac hypertrophy and heart failure
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Table 1 Mechanisms, clinical relevance, targets and development of microRNA-based therapeutics by companies (Continued)

miR-145 Genetic deletion of miR-145 results in excessive
remodeling of the right ventricle and decreasing blood
pressure. After vascular injury, the cytoskeleton of
smooth muscle cells is modulated by a downregulation
of miRNA-145

JAM-A x [172]

miR-221, miR-222 Proliferation of smooth muscle cells is partially
enhanced by an increase in endogenous miRNA-221
and miRNA-222 levels

c-Kit, eNOS, ETS-1, PAK1, p27, p57, STAT5A [163]

miR-126 As atherosclerosis develops, the inflammation of vessel
walls is enforced by a downregulation of miRNA-126
promoting the expression of VCAM-1 (vascular cell
adhesion molecule) and inducing the production of
CXCL12 (C-X-C motif chemokine 12), which in turn
leads to the recruitment and adhesion of further
inflammatory cells

BCL-2, FOXO3, IRS1 [174, 175]

miR-217 When expression of miRNA-217 in atherosclerotic
plaques increases, the endothelium disintegrates, which
then leads to the inhibition of SIRT1 that causes an
acceleration of vascular senescence

SirT1 [176]

miR-1 In developing mouse hearts, the overexpression of
miR-1 causes decreased cardiomyocyte proliferation
and premature differentiation. Experiments with mice
suggest that transient downregulation of miR-1 may
prove to be of therapeutic benefit to patients suffering
from acute myocardial infarction

MLCK, KLF4, MRTF-A, PIM-1 [13, 177, 178]

miR-1 negatively regulates key components of calcium
signaling pathways and fetal gene activation, making
it a vital part of agonist-induced cardiomyocyte
hypertrophy in the mouse

ABCA1 ATP binding cassette transporter A1, ABCG1 ATP binding cassette transporter G1, AMPKα AMP kinase subunit-α, AT1R angiotensin II type 1 receptor, BCL-2 B-cell lymphoma 2, CARM1 coactivator-associated
arginine methyltransferase 1, CDC42 cell division control protein 42, CPT1A carnitine palmitoyltransferase 1A, CROT carnitine O-octaniltransferase, DNMT3b DNA methyltransferase 3b, eNOS endothelial nitric oxide
synthase, ETS-1 E26 transformation-specific sequence 1, FADD Fas-associated death domain-containing protein, FOXO3 forkhead box O3, HADHB hydroxyacyl-CoA-dehydrogenase, IRAK1 interleukin-1 receptor-
associated kinase 1, IRAK2 interleukin-1 receptor-associated kinase 2, IRS1 insulin receptor substrate 1, IRS2 insulin receptor substrate 2, HBP1 HMG box-transcription protein 1, JAM-A junctional adhesion molecule-A,
LPL Lipoproteinlipase, MAP3K10 mitogen-activated kinase kinase kinase 10, MLCK myosin light chain kinase, MRTF-A myocardin-related transcription factor A, MYL9 myosin light chain 9, NOX4 NADPH oxidase 4, NPC1
Niemann-Pick C1, PAK1 p21/Cdc42/Rac1-activated kinase 1, PDCD4 programmed cell death 4, PPARα peroxisome proliferator-activated receptor-α, PRKAA1 protein kinase, AMP-activated, α 1 catalytic subunit, PTEN
phosphatase and tensin homologue, SIRT1 sirtuin 1, SirT1 silent information regulator 1, SREBP-1 sterol regulatory element-binding protein 1, STAT5A signal transducer and activator of transcription 5A, TLR4 toll-like
receptor 4, TPM1 tropomyosin 1, TRAF6 TNF receptor-associated factor 6
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achieved by an RNase H cleavage mechanism that de-
grades the transcript [190]. Thus, the target mRNA can-
not be translated and the level of protein is reduced as it
is prevented from reaching the ribosome [191, 192].
Mipomersen, a first-in-class ASO inhibitor recently ap-

proved by the FDA, inhibits a synthesis of messenger
RNA (mRNA) of apolipoprotein B (Apo B) in the liver.
Kynamro furthermore reduces LDL-c for the treatment
of homozygous familial hypercholesterolemia. These
findings enable other oligonucleotide-based therapies
and thus bring miRNA therapeutics closer to clinical
practice [193].
Another LDL-c lipid-lowering agent is lomitapide.

Lomitapide and mipomersen both lower LDL-c through
the reduced production of hepatic VLDL, which allows
them to act independently of an LDL receptor, making
them suitable treatment options for patients with homo-
zygous familial hypercholesterolemia.
However, hepatic fat accumulation is intrinsincally

linked to the processes connected to lomitapide and
mipomersen. The long-term implications of this negative
effect are unknown at this time [193]. Lomitapide can
also cause gastrointestinal side effects, like diarrhea and
nausea, which are, however, manageable by decreasing
the medication dose and maintaining a strict low-fat
diet. Lomitapide as a cytochrome P450 3A4 inhibitor
has potential for drug-drug interactions with other cyto-
chrome P450 3A4 inhibitors and drugs metabolized by
cytochrome P450 3A4 [193]. Mipomersen, on the other
hand, can lead to injection-site reactions and flu-like
symptoms [193].
Kynamro currently has approval for treatment of fa-

milial hypercholesterolemia [194–196], a genetic dis-
order of lipid metabolism characterized by elevated
LDL-c, as well as an increased risk of suffering prema-
ture coronary heart disease [156].

2. Long non-coding RNAs (lncRNAs)

While research predominantly discusses small non-
coding RNAs, such as microRNAs, long non-coding
RNAs (lncRNAs) are gaining more prominence as regu-
lators of gene expression. The central role that lncRNAs
play in heart development is only slowly being recog-
nized. In addition, understanding the function of these
molecules in CVD is even further away [13].
Long non-coding RNAs are a large and diverse class of

transcribed RNA molecules, exhibiting a length of more
than 200 nucleotides that do not encode proteins and
are primarily located in the nucleus [197]. Long non-
coding RNAs function either by binding to DNA or
RNA in a sequence-specific manner or by binding to
proteins [197]. They are transcribed as overlapping sense
and anti-sense transcripts of coding DNA regions

responsible for the regulation of the transcription of cor-
responding overlapping mRNA [198]. LncRNAs are
functionally distinct from small non-coding RNAs,
namely miRNAs, as the latter primarily mediate post-
transcriptional repression in the cytoplasm. Certain
lncRNAs are precursors for smaller regulatory RNAs such
as miRNAs or piRNAs [197]. lncRNAs play a significant
role in epigenetic regulation as they, for instance, mediate
the activation or repression of target genes through
methylation of DNA posttranslational histone modifica-
tions [13, 199]. Their expression is developmentally regu-
lated and can be tissue- and cell-type specific [197]. As
lncRNAs are believed to bear important regulatory func-
tions, they add yet another layer of complexity to our un-
derstanding of genomic regulation [197].
The lncRNA anti-sense non-coding RNA in the INK4

locus (ANRIL) [200–209] modulates atherosclerosis sus-
ceptibility at Chr9p21.3 and is overexpressed in human
atherosclerotic plaques [201, 210]. ANRIL is furthermore
a mediator of epigenetic regulation [13]. The overex-
pression of ANRIL moreover causes accelerated pro-
liferation and increased adhesion, as well as decreased
apoptosis [205], both of which are key mechanisms of
atherogenesis [205].
The lncRNAs FOXF1 adjacent non-coding developmen-

tal regulatory RNA (FENDRR) and Braveheart partake in
defining the gene transcription program responsible for
heart development and cardiomyocyte differentiation, re-
spectively, which indicates they may also be involved in
heart failure [211, 212].

Discussion and limitations
To our knowledge, no epigenetically active agents or
drugs targeting histone acetylation and/or methylation
have thus far entered clinical trials for CVD, nor have
any of the latter been approved by the FDA (US Food
and Drug Administration). Data on the potential use of
epigenetically active compounds concerning these path-
ologies are, in fact, merely provisional. The complex re-
lationship between epigenetic regulation and CVD
development clearly demands further studies.
Epidemiological and clinical studies have shown that

lifestyle modifications including nutritional habits and
exercise are first protective measures for reducing the
risk of CVD. Nutritional factors in particular are essential
for preventing cardiovascular diseases. This comprises
both avoiding undesirable food supplements, such as high
concentrations of salt and low-density lipoproteins, while
simultaneously emphasizing nutritional ingredients
with beneficial health effects. Food components such as
polyphenols, cocoa, and folic acid are known to affect
epigenetic signaling pathways including DNA methyla-
tion, whereas it should be kept in mind that excessive
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application of folic acid significantly increases the risk
of carcinoma.
Although clinical practice does not yet use epigeneti-

cally active molecules in the therapy of atherosclerosis-
related CVD, currently available therapies, such as those
using statins to promote epigenetic-based control in CVD
prevention through histone modifications, are already
moving towards an exploitation of these mechanisms.
While it has been more than 20 years since NO was

identified as an endogenous agent produced by the car-
diovascular system, until recently attempts to create ac-
ceptable therapeutic measures for the modulation of
endogenous NO activity or production have not pro-
gressed much. NO and its signaling responses possess
complex features of chemistry, biochemistry, and mo-
lecular biology. The development of targeted therapies
for NO delivery or agents that enhance endogenous NO
production is intrinsically difficult and the optimal sup-
plemental therapies to significantly increase the positive
effects of NO donors or endogenous NO are equally dif-
ficult to determine. Thus, all of these issues connected
to an epigenetic treatment of CVD require additional
clinical study [135].
Non-coding RNAs were found to be important in the

pathogenesis of cardiovascular disease and also offer the
possibility of operating as diagnostic and prognostic bio-
markers [213]. Recent studies—though limited to animal
models—have suggested that miRNA inhibition could be
an effective therapeutic approach in CVD. Several clas-
ses of RNA therapeutics are currently under clinical de-
velopment by biotechnology companies, including anti-
sense oligonucleotides as well as microRNA mimetics
and inhibitors.
The use of miRNA and their targets as diagnostic

markers or as therapeutics for CVD is promising, but
has not yet been realized. As each miRNA may post-
transcriptionally regulate 100 different mRNAs, it is dif-
ficult to connect any particular miRNA to a specific dis-
ease [13, 214]. For this reason, it would be preferable to
restrict changes in miRNA levels to diseased cells. While
the stable inhibition of target miRNAs in specific cell
types cannot be achieved through any methodical means
currently available, the future is likely to hold some
promising opportunities [13].
Further studies are necessary to improve our under-

standing of the involvement of lncRNA in regulating
gene expression changes underlying heart failure, for ex-
ample. Through the data won from such studies, it could
be possible to develop specific therapeutic strategies for
heart failure, for example, on the basis of interference
with lncRNA pathways. The role of lncRNAs (e.g.,
FENDRR, Braveheart) in heart development is now
emerging. lncRNA mechanisms may prove successful in
preventing and treating different CVD [210].

Conclusions
Cardiovascular diseases confront mankind with vast and
daunting health and financial burdens. Improving prevent-
ive and therapeutic measures against them is becoming
increasingly necessary. Research efforts should particularly
aim at the primary prevention of CVD. There is a promise
for enhancing the therapeutic armamentarium against a
variety of cardiovascular diseases, particularly as cardio-
vascular tissues are now being targeted with epigenetic
therapies.
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