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Abstract

Background: DNA hypermethylation is reported as a frequent event and prognostic marker in head and neck
squamous cell carcinomas (HNSCC). Methylation has been commonly assessed with non-quantitative methodologies,
such as methylation-specific PCR (MSP). We investigated previously reported hypermethylated genes with quantitative
methodology in oral tongue squamous cell carcinomas (OTSCC).

Results: The methylation status of 12 genes in 115 OTSCC samples was assessed by one or more of three quantitative
analyses: methylation sensitive high resolution melting (MS-HRM), sensitive-melting analysis after real time-methylation
specific PCR (SMART-MSP), and bisulfite pyrosequencing.
In contrast to much of the literature, either no or infrequent locus-specific methylation was identified by MS-HRM for
DAPK1, RASSF1A, MGMT, MLH1, APC, CDH1, CDH13, BRCA1, ERCC1, and ATM. The most frequently methylated loci were
RUNX3 (18/108 methylated) and ABO (22/107 methylated). Interrogation of the Cancer Genome Atlas (TCGA) HNSCC
cohort confirmed the frequency of significant methylation for the loci investigated.
Heterogeneous methylation of RUNX3 (18/108) and ABO (22/107) detected by MS-HRM, conferred significantly worse
survival (P = 0.01, and P = 0.03). However, following quantification of methylation levels using pyrosequencing, only
four tumors had significant quantities (>15%) of RUNX3 methylation which correlated with a worse patient outcome
(P <0.001), while the prognostic significance of ABO hypermethylation was lost. RUNX3 methylation was not prognostic
for the TCGA cohort (P = 0.76).

Conclusions: We demonstrated the critical need for quantification of methylation levels and its impact on correlative
analyses. In OTSCC, we found little evidence of significant or frequent hypermethylation of many loci reported to be
commonly methylated. It is likely that previous reports have overestimated the frequency of significant methylation
events as a consequence of the use of non-quantitative methodology.
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Background
DNA methylation, which is characterized by 5-methyl-
cytosines in CpG dinucleotides, can mediate an epigenetic
mechanism of altering gene expression. This epigenetic
change provides both an opportunity for therapeutic ma-
nipulation, as well as serving as a candidate predictive or
prognostic marker [1]. For example, DNA methylation of
MGMT is considered as both a prognostic marker for pa-
tients with glioblastomas as well as a predictive marker for
benefit of the use of the DNA alkylating agent, temozolo-
mide, in the management of this disease [2]. Additionally,
the use of demethylating agents has transformed the stand-
ard management of high-risk myelodysplastic disorders [3].
As epimutations are more frequent than genetic muta-

tions in the cancer genome [4], DNA methylation forms
an ideal putative biomarker. Indeed, DNA hypermethyla-
tion is a commonly reported phenomenon for multiple
genes in head and neck squamous cell carcinomas
(HNSCC). For example, CDKN2A disruption is recog-
nized as an early event in carcinogenesis of HNSCC that
can arise due to promoter methylation [5], and addition-
ally may be predictive of disease recurrence [6,7]. Many
other genes have been reported to be frequently methyl-
ated across head and neck subsites, including DAPK1,
RASSF1A and MGMT [8-10]. However, considerable vari-
ation in the frequency of reported methylation events for
most loci is described, and correlation with clinicopatho-
logical features within heterogeneous cohorts is unclear.
In addition, the common use of non-quantitative method-

ology hinders the interpretation of the relevance of reported
hypermethylated loci. Non-quantitative methodology is
prone to the inclusion of false positive results [11-15].
Furthermore, the failure to quantify methylation incor-
rectly assumes homogeneity of levels and the signifi-
cance of all detected methylation [14,15]. One of the
most frequently used, non-quantitative techniques is
methylation-specific polymerase chain reaction (MSP),
which relies only on gel electrophoresis resolution of PCR
products to determine the presence of methylation [16].
Thus, in order to identify putative prognostic markers

for oral tongue squamous cell carcinomas (OTSCC), we
assessed a panel of literature-identified genes reported to
be hypermethylated in HNSCC with only quantitative
methodology, and we sought to determine any correl-
ation with patient outcome. The loci interrogated in-
cluded the promoter region of the DNA repair genes:
MGMT, MLH1, ATM, BRCA1 and ERCC1 [6,9,10,17-20];
genes mediating control of cellular proliferation: RASSF1A,
APC and RUNX3 [8,9,21-23]; the pro-apoptotic tumor
suppressor gene: DAPK1 [6,9,10,24]; and genes involved
in invasion and metastases: CDH1, CDH13 and ABO
[9,24-27]. Table 1 provides a summary of the HNSCC lit-
erature in terms of the frequency of methylation events
for each gene, the methodology used for the detection of
methylation, and the univariate correlative analysis with
patient survival.
The variety of loci has been selected for two reasons;

firstly, to investigate the large variation in the reported
frequency of methylation events, and secondly, to inves-
tigate loci relevant to carcinogenesis. Specifically, APC,
ATM, CDH1, CDKN2A, DAPK1, MLH1, MGMT, and
RASSF1A were chosen due to the high frequency of
methylation events reported in the literature and their
plausible roles in HNSCC carcinogenesis. In addition,
other loci of relevance to cancer were selected. As con-
current cisplatin-based chemoradiotherapy is a standard
of care for advanced HNSCC, methylation of ERCC1
was investigated due to reports of the prognostic signifi-
cance of expression of this nucleotide excision repair
protein in other head and neck subsites (laryngeal and
nasopharyngeal) [80,81] and its association with resist-
ance to cisplatin therapy [81-83]. ERCC1 has also been
reported by us as being methylated in low frequency in
lung cancer [84]. ABO was selected due to reports spe-
cifically in oral carcinomas that detected methylation of
the gene, loss of expression of these epithelial antigens
[28], and frequent alteration of chromosome 9q34 where
the ABO gene resides [85,86]. Methylation of ATM was
investigated due to a number of reasons: patients who suf-
fer ataxia telangiectasia defined by ATM gene dysfunction
are known to be predisposed to the development of oral
carcinomas [87]; there are reports demonstrating high fre-
quencies of ATM methylation in HNSCC [18,31,33]; ATM
plays a crucial role in double-stranded DNA repair, and
thus, gene dysfunction contributes to exquisite sensitivity
to radiation treatment, which is a key therapeutic modality
for the management of HNSCC [88,89]; and due to our
previous investigation of the impact of other mechanisms
of ATM gene loss in HNSCC [90]. BRCA1 was investi-
gated due to its role in homologous DNA repair, and as
part of the Fanconi Anemia/BRCA pathway [35,91,92],
with the known genetic predisposition of patients with
Fanconi Anemia to develop malignancies including oral
tongue and oral cavity squamous cell carcinomas [93].
CDH13 was of interest as part of the cadherin family, with
reports suggesting that methylation of this gene was rele-
vant in HNSCC [24,30,32,94]. Additional reports suggest
that methylation of CDH13 has a prognostic role in other
smoking-related carcinomas [95].
Therefore, in a uniform head and neck subsite, the

oral tongue, this study used quantitative methodologies
to investigate a panel of genes previously reported to be
hypermethylated in HNSCC.

Results
Clinical details
Details of the full cohort of 131 patients have previously
been described [96]. The clinical and tumor characteristics



Table 1 Literature identified hypermethylated loci in head
and neck squamous cell carcinomas, according to frequency,
methodology and univariate correlation with survivala

Gene % Methylation
(n)

Publication Methodologyb Correlation
with outcomec

ABO 33 (30) [28] MSP, MCA -

APC 9-71%

13 (47) [29] MSP -

17 (79) [30] MS-MLPA N

71 (84)d [31] MSP -

15 (34) [22] MSP, MCA -

18 (77) [27] Nested MSP N

9 (126)e [32] MS-MLPA -

ATM 0-88%

42 (24)f [33] MSP -

88 (84)d [31] MSP -

0 (37) [34] Pyrosequencing -

25 (100) [18] MSP W

1 (126 )e [32] MS-MLPA -

BRCA1 0-95%

95 (58)d [20] Pyrosequencing -

0 (89) [35] MSP -

0 (126)e [32] MS-MLPA -

CDH1 0-88%

0 (32) [36] MSP -

18 (48) [37] qMSP N

88 (43) [38] MSP -

33 (340)f [39] MSP I

13 (38) [40] MSP I

43 (54) [41] MSP -

62 (76) [42] MSP -

64 (86) [25] RE-MSP Wg

78 (23) [43] MSP -

43 (190) [9] MSP N

42 (47) [29] MSP -

43 (77) [27] Nested MSP W

38 (37) [34] Pyrosequencing -

42 (79) [44] Pyrosequencing -

36 (80) [45] MSP -

66 (33)h [46] qMSP N

35 (99) [47] RE-MSP -

35 (55)f [48] MSP -

CDH13 10-34%

34 (79) [30] MS-MLPA N

10 (126)e [32] MS-MLPA -

(Continued)

Gene % Methylation
(n)

Publication Methodologyb Correlation
with outcomec

CDKN2A
(P16)

0-95%

38 (56) [49] MSP -

49 (73) [50] MSP N

36 (47) [51] MSP N

49 (51) [52] MSP -

12 (61) [53] MSP N

48 (92) [54] qMSP -

22 (48) [37] qMSP N

78 (40)h [55] MSP N

13 (79) [30] MS-MLPA N

63 (43) [38] MSP -

5 (42) [40] MSP N

60 (54) [41] MSP -

87 (38) [7] MSP -

17 (24)f [56] MSP -

27 (56 )h [57] RE-MSP -

79 (75) [58] MSP I

20 (20) [59] MSP -

44 (126) [9] MSP N

59 (47) [29] MSP -

58 (77) [27] Nested MSP N

95 (41) [60] MSP -

26 (37) [34] Pyrosequencing -

28 (79) [44] Pyrosequencing -

24 (45)f [61] MSP -

20 (20) [62] RE-MSP -

33 (80) [45] MSP -

29 (96) [63] MSPi N

47 (30) [10] MSP -

29 (116) [64] MSP W

27 (95) [65] MSP -

20 (121) [66] MSP -

29 (52)h [46] qMSP W

23 (99) [47] RE-MSP N

8 (51)f [48] MSP -

23 (30) [67] RE-MSP -

0 (126)e [32] MS-MLPA -

DAPK1 7-81%

14 (79) [30] MS-MLPA N

81 (43) [38] MSP -

11 (44) [40] MSP N

60 (54) [41] MSP -

76 (41) [68] MSP -
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(Continued)

Gene % Methylation
(n)

Publication Methodologyb Correlation
with outcomec

42 (290) [9] MSP N

37 (77) [27] Nested MSP N

30 (47) [29] MSP -

19 (32) [36] MSP -

45 (20) [59] MSP -

39 (18) [60] MSP -

24 (80) [45] MSP -

7 (96) [63] MSPi N

33 (30) [10] MSP -

18 (95) [65] MSP -

42 (33)h [46] qMSP N

20 (49)f [48] MSP -

12 (126)e [32] MS-MLPA -

ERCC1 51 (84) [19] MSP N

MGMT 18-74%

30 (47) [51] MSP N

53 (51) [52] MSP -

10 (20) [53] Pyrosequencing Wj

30 (88) [53] MSP Wj

36 (44)h [69] MSP -

31 (32) [36] MSP -

43 (40) [40] MSP N

53 (54) [41] MSP -

74 (76) [42] MSP -

50 (20) [59] MSP -

27 (212) [9] MSP N

54 (41) [68] MSP -

31 (37) [34] Pyrosequencing -

28 (21) [70] MSP -

23 (30) [10] MSP -

33 (95) [65] MSP -

21 (33)h [46] qMSP N

38 (47) [29] MSP -

34 (77) [27] Nested MSP N

41 (99) [47] RE-MSP -

25 (52)f [48] MSP -

18 (94) [71] MSP W

MLH1 0-88%

26 (47) [29] MSP -

18 (28) [72] MSP -

0 (20) [73] RE-MSP -

23 (62) [49] MSP -

23 (47) [51] MSP N

(Continued)

Gene % Methylation
(n)

Publication Methodologyb Correlation
with outcomec

47 (116)e [74] RE-MSP -

37 (123) [75] RE-MSP -

88 (8) [76] MSP -

69 (54) [41] MSP -

0 (37) [34] Pyrosequencing -

29 (49) [17] MSP -

76 (50) [77] MSP -

0 (96) [63] MSPi N

8 (99) [47] RE-MSP -

14 (43)f [48] MSP -

0 (126)e [32] MS-MLPA -

RASSF1A 0-44%

17 (24) [78] RE-MSP -

12 (66) [53] MSP N

2 (41) [40] MSP N

18 (54) [41] MSP -

0 (32) [36] MSP -

32 (41) [68] MSP -

38 (47) [27] MSP -

44 (18) [60] MSP -

22 (482)h [8] dHPLC N

8 (80) [45] MSP -

33 (33)h [46] qMSP N

6 (50)f [48] MSP -

11 (126)e [32] MS-MLPA -

RUNX3 18-70%

70 (30) [79] MSP -

26 (47) [29] MSP -

25 (76) [21] MSP N

18 (45)f [61] MSP -
aMethylation frequency is only reported for intra-tumoral methylation. A summary
of the range of reported methylation is presented in bold font when available.
bMethodology: dHPLC, denaturing high-performance liquid chromatography;
MCA, melting curve analysis; MSP, methylation-specific PCR; MS-MLPA,
methylation specific multiplex ligation-dependent probe amplification; RE-MSP,
restriction enzyme MSP. A prefixed ‘q’ indicates the use of a quantitative
version of the methodology.
cCorrelation with outcome: W, Worse; I, Improved; N, None; - Not performed.
dthese studies identified similar frequencies or quantities of methylation as
control samples.
ethese studies included samples with mixed histotypes, not just squamous
cell carcinomas.
fthese studies tested for the presence of the Human Papillomavirus.
gthis study determined correlation with outcome based on immunohistochemistry.
hthese studies include patients with betel nut or areca nut exposure.
ithese studies quantified the band intensity on gel electrophoresis.
jthis study examined a subset of samples that had demonstrated methylation
with MSP, with quantitative methodology.
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Table 2 Summary of patient and tumor characteristics for
the cohort analyzed

N %

Gender

Female 41 36%

Male 74 64%

Age at diagnosis (in years)

Mean 57.4

Standard deviation 15.5

Median 56

Range 21 – 93

<40 years 14 12%

40 to 49 years 24 21%

50 to 59 years 21 18%

60 to 69 years 26 23%

70 to 79 years 24 21%

80+ years 6 5%

Stage

1 33 29%

2 34 30%

3 13 11%

4 35 30%

T-category

1 39 34%

2 45 39%

3 12 10%

4 19 17%

N-category

0 74 64%

1 11 10%

2 30 26%

Smoking history

No/Never 33 30%

Yes 78 70%

Unknown 4

Alcohol consumption >20 g/day

No/Never/Social 70 63%

Past or current 41 37%

Unknown 4

ECOG performance status

0 69 61%

1 34 30%

2 7 6%

3 3 3%

Unknown 2

ECOG, Eastern Cooperative Oncology Group; N-category, Node category;
T-category, Tumor category.
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of the 115 patients with bisulfite modified DNA available
for methylation analyses are presented in Table 2. Median
time of follow-up for the whole cohort was 5.1 (range 0.5
to 9.8) years.

Methylation Sensitive High Resolution Melting (MS-HRM)
analyses
A summary of the methylation sensitive high resolution
melting (MS-HRM) results for the panel of interrogated
genes is presented in Table 3, including results from our
previous study on CDKN2A [96].
In comparison to much of the previously published lit-

erature, no methylation or infrequent methylation was
detected for the majority of loci examined. No signifi-
cant methylation (0%) was detected in any of the sam-
ples for the following genes: DAPK1 (91/91), RASSF1A
(49/49), MGMT (50/50), MLH1 (49/49), BRCA1 (45/45),
ERCC1 (47/47) and ATM (48/48). For the following
loci, the majority of samples had no methylation, but
definite methylation was present in a subset of samples:
RUNX3 (18/108 methylated), ABO (22/107 methylated),
APC (3/105 methylated), CDH1 (13/114 methylated)
and CDH13 (4/112 methylated). Both homogeneous
and heterogeneous methylation, as ascertained by melt-
ing profiles, was observed for these loci.
Heterogeneous melting patterns were detected for ABO

(19/107), CDH1 (13/114), CDH13 (3/112) and RUNX3
(18/108). Homogeneous melting patterns were observed
for APC in three samples (3/105), all of which had a
methylation level of greater than 25%. Homogeneous
methylation of ABO was also observed for three samples,
which all demonstrated methylation levels of 10 to 25%. In-
cluding the samples with heterogeneous methylation, the
frequency of methylation events for ABO and RUNX3 were
similar to the literature although numerically less [21,26].

Sensitive-melting analysis after real time-methylation
specific PCR (SMART-MSP)
On the basis of reports suggesting frequencies of
methylation greater than 20% for both DAPK1 and
RASSF1A [8,9,68], sensitive-melting analysis after real
time-methylation specific PCR (SMART-MSP) analyses
were used to confirm a subset of the MS-HRM findings
[97]. Utilizing this quantitative modification of MSP per-
mitted the concurrent investigation of possible reasons for
discordance between MS-HRM results and the MSP-
based literature. SMART-MSP incorporates the use of a
DNA intercalating dye, which permits both real-time
quantification and melting curve analysis (MCA), which
can minimize the number of false positives [97].
The promoter status of DAPK1 for 50 samples was in-

vestigated using SMART-MSP. On quantification, the
median level of methylation present was 0.0015% (range
0 to 1.3%), with only one sample demonstrating a level



Table 3 Summary of methylation events for each locus assessed by methylation sensitive high resolution melting
(MS-HRM), and assessed in the Cancer Genome Atlas (TCGA) cohorta

Gene Total
number

of samples

Level of methylation TCGA HNSCC
(n = 305)

TCGA OTSCC
(n = 86)

0% <10% 10 to 25% 25 to 50% >50% Heterogeneous β-value >0.2 β-value >0.2

ABO 107 78 (73%) 7 (7%) 3 (3%) 0 0 19 (17%) 139 (46%) 32 (37%)

cg13506600, cg07241568

APC 105 102 (97%) 0 0 3 (3%) 0 0 50 (16%) 12 (14%)

cg14479889, cg03667968,
cg16970232

ATM 48 48 (100%) 0 0 0 0 0 0 0

cg18457775, cg06750635

BRCA1 45 44 (98%) 1 (2%) 0 0 0 0 0 0

cg20187250, cg15419295,
cg16963062, cg16630982,
cg21253966, cg04110421,
cg04658354

CDH1 114 91 (80%) 10 (9%) 0 0 0 13 (11%) 1 (0%) 1 (0%)

cg16739895, cg23989635,
cg11255163

CDH13 111 107 (96%) 1 (1%) 0 0 0 3 (3%) 41 (13%) 9 (10%)

cg08747377

CDKN2A [96] 113 78 (69%) 15 (13%) 8 (7%) 6 (5%) 6 (5%) 0 55 (18%) 21 (24%)

cg04026675, cg13601799

DAPK1 91 87 (96%) 4 (4%) 0 0 0 0 46 (15%) 8 (9%)

cg08797471, cg13932603

ERCC1 47 47 (100%) 0 0 0 0 0 11 (4%) 3 (3%)

cg20467502, cg23902435

MGMT 50 37 (74%) 13 (26%) 0 0 0 0 23 (8%) 5 (6%)

cg02941816, cg05068430

MLH1 49 49 (100%) 0 0 0 0 0 1 (0%) 0

cg23658326

RASSF1A 49 48 (98%) 1 (2%) 0 0 0 0 11 (4%) 0

cg04743654, cg27569446

RUNX3 108 90 (83%) 0 0 0 0 18 (17%) 37 (12%) 16 (19%)

cg19590532, cg06377278

The frequency of methylation events assessed by MS-HRM is presented with the frequency of methylation events (β-value >0.2) for the TCGA HNSCC cohort and
TCGA OTSCC subgroup. The Cg number of the probes from the Infinium HumanMethylation450 beadchip array that were examined in reference to the MS-HRM
amplicons is annotated for each gene as ‘cg locus number’.
TCGA HNSCC, The Cancer Genome Atlas head and neck squamous cell carcinoma cohort; TCGA OTSCC, The Cancer Genome Atlas oral tongue squamous cell
carcinoma cohort.
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of methylation above 1%. However, despite the low levels
of methylation quantified, on MCA analyses 41/50 sam-
ples demonstrated a pattern consistent with the presence
of methylation, emphasizing the sensitivity of MSP. Gel
electrophoresis of SMART-MSP products was also per-
formed (Figure 1), and positive bands were detected for
samples with calculated quantification of methylation
below 0.2%. False positive, similar sized bands were also
observed for some samples that failed to amplify during
PCR and also for samples with a MCA pattern consistent
with unmethylated DNA. SMART-MSP analysis for
RASSF1A was performed for ten samples, and no (0%)
methylation was detected in these.
Thus, we confirmed with a second quantitative method-

ology that no significant level of DNA promoter methyla-
tion for DAPK1 and RASSF1A was found in the cohort
examined. Gel electrophoresis revealed similar sized bands
for samples with extremely low levels of methylation or
no methylation, illustrating a likely cause in the literature
for overestimation of significant methylation events.



Figure 1 Sensitive-melting analysis after real time-methylation specific PCR (SMART-MSP) assessment of DAPK1. Gel electrophoresis of
representative SMART-MSP products in duplicate, assessing methylation of the DAPK1 promoter 1 region. High resolution melting curve analysis
(MCA) is represented by + (indicating methylation) and - (indicating no methylation). Quantification of methylation is reported in %. (100% - fully
methylated control, 0.1% - 0.1% dilution control, WGA - unmethylated control, NTC – non-template control). The band sizes observed for the
100% methylated control and 0.1% control were appropriately of identical size, due to the inability of this methodology to differentiate quantities
of methylation. Sample 6-7 and sample 6-6 demonstrated the presence of methylation on MCA, with gel electrophoresis of PCR products producing
band sizes similar to the methylated controls. However, when quantified, the levels of methylation measured below 0.1%. For sample 6-9 and sample
5-5, bands similar to the methylated controls were observed, despite MCA and quantification indicating no detectable levels of methylation. These
bands represent false positive results.
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Clinical correlation between methylation sensitive high
resolution melting (MS-HRM) analyses and patient outcome
Analyses correlating the presence of promoter methy-
lation with patient outcome was possible only for the
following genes for which methylation was detected;
RUNX3, CDH13, APC, ABO and CDH1. Patients with
promoter methylation detected for RUNX3 (18/108, all
heterogeneously methylated) had a significantly worse
overall survival (OS) compared with patients without
methylation, with a five-year OS rate of 32% versus
57% (HR = 2.22, 95% CI: 1.15-4.29, P value = 0.01). This
effect was maintained for progression-free survival
(PFS) (33% versus 51% five-year PFS; HR = 2.07, 95%
CI: 1.03-4.18, P value = 0.04).
While a much smaller number of events was observed

for samples demonstrating ABO promoter hypermethy-
lation, for the 3/87 patient samples that demonstrated
homogeneous methylation, this significantly correlated
with a worse five-year OS rate of 0% versus 57% (HR =
6.51, 95% CI: 1.94-21.8, P value = 0.014). Similar results
were found for PFS. The effect was maintained when
samples with heterogeneous methylation were included
in the analysis (3/107, 10 to 25% homogeneously methyl-
ated and 19/107 heterogeneously methylated), with a
worse five-year OS rate of 32% versus 57% for methylated
samples (HR = 1.98, 95% CI: 1.06-3.70, P value = 0.03).
Significant correlation with PFS was not observed.

Bisulfite pyrosequencing analyses and correlation with
patient outcome
Given the statistically significant correlation with out-
come for patient samples with methylation of RUNX3
and ABO, which included unquantified heterogeneously
methylated samples, we sought to investigate this further
with bisulfite pyrosequencing.
For the RUNX3 pyrosequencing analysis, 83 samples

had sufficient bisulfite modified DNA available for as-
sessment. These samples included the 16/18 samples
with heterogeneous methylation identified by MS-HRM.
Five samples that failed to produce an adequate signal
on pyrosequencing were not included in the analysis. On
pyrosequencing, only four samples (4/78) demonstrated
mean methylation quantities greater than 15%. The rest
of the cohort (74/78), including samples that previously
had heterogeneous methylation identified on MS-HRM,
had mean quantities of methylation below 12% and thus
were scored as negative according to our predefined
criteria (Figure 2). A significantly worse outcome was
found for the four patients with RUNX3 promoter
hypermethylation greater than 15%, with a five-year
OS rate of 0% versus 56% (HR = 10.2, 95% CI: 3.23-
32.4, P value = 0.001). Given the small number of observed
events, firm conclusions could not be made despite the sig-
nificance of the P value, and further analyses were not
pursued.
For the ABO pyrosequencing analysis, 85 samples had

sufficient bisulfite modified DNA available. Of these,
20/85 samples demonstrated levels of mean methyla-
tion greater than 15%. For the statistical analysis, two
samples that had demonstrated quantities of methyla-
tion between 10 to 25% on MS-HRM but had insuffi-
cient DNA for pyrosequencing were also included. For
the 22 patients with significant methylation of ABO
identified, no statistically significant clinical correlation
with survival was found (HR = 1.43, 95% CI: 0.73-2.80,
P value = 0.29).



Figure 2 Pyrosequencing results for all samples demonstrating
heterogeneous methylation of RUNX3 when assessed by
methylation sensitive high resolution melting (MS-HRM). Each
analyzed sample is annotated for the quantity of methylation detected
at each CpG site interrogated, and the mean methylation value for all
CpG sites analyzed is also provided. This figure demonstrates that the
vast majority of samples with heterogeneous methylation for this locus
assessed by MS-HRM, had low levels of methylation when quantified
by pyrosequencing.
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Thus, we demonstrate the impact of quantification of
methylation levels. For the investigated loci, though het-
erogeneous methylation was identified on MS-HRM, the
vast majority of these indicated low level methylation
events. Of particular note, the initial MS-HRM analysis
indicated a frequency of (heterogeneous) RUNX3 methy-
lation of 17% of samples consistent with the literature.
However, when quantified by pyrosequencing, the actual
frequency of significant methylation events for RUNX3
was considerably less (5%). The presence of RUNX3 pro-
moter methylation was found to correlate with a worse
patient outcome, although due to the small numbers ro-
bust conclusions cannot be made. In contrast, when
ABO promoter methylation was quantified with pyrose-
quencing, correlation with patient outcome was lost with
a minor alteration in the frequency of observed events
(22/107, 21% for MS-HRM, and 22/85, 26% for pyrose-
quencing). These observations highlight the impact of
methodology and sample size on correlative analyses.

External validation of results through interrogation of the
Cancer Genome Atlas (TCGA) database
To externally validate our findings, which suggested that
the frequency of significant methylation events of selected
loci was less common than the literature suggested, the
Cancer Genome Atlas (TCGA) head and neck cohort
were examined. At the time of download (24 June 2013;
clinical data download date 22 July 2013), there were
373 TCGA head and neck tumor samples with publi-
cally available Infinium HumanMethylation450 bead-
chip array (HM450K) data available. A total of 26 patients
were excluded due to the presence of metastatic disease
or an unknown “M-category” (metastasis-category), a his-
tory of previous malignancy, or primary site documented
as the ‘lip’. Of the remaining 346 patients, 305 patients
had both clinical details and methylation data available. Of
these 305 patients, 86 patients had OTSCC.
The summary of significant methylation events

(β value >0.2) for the examined loci within the TCGA
HNSCC cohort is presented in Table 3. For the HM450K
probes that overlapped the MS-HRM amplicons, a similar
frequency of methylation was observed (see Additional
file 1: Figure S1). Methylation levels from probes that
flanked the MS-HRM amplicons also indicated a similar
frequency of methylation events (see Additional file 1:
Figure S2), although comparison across different re-
gions is difficult.
Interestingly, DAPK1 methylation for the probes flank-

ing the MS-HRM amplicon demonstrated a frequency of
methylation events of 15% in the heterogeneous HNSCC
TCGA cohort and 9% in the TCGA OTSCC subset.
Samples with DAPK1 methylation in the whole HNSCC
cohort were distributed between multiple head and neck
subsites. Methylation of RASSF1A was identified in 4%
of samples in the HNSCC TCGA cohort, but none of
these were OTSCC samples.
To assess whether RUNX3 promoter methylation had

prognostic value in the TCGA cohort, methylation re-
ported from the probes flanking the MS-HRM amplicon
was correlated with patient outcome for the whole
TCGA HNSCC cohort, and for the subset of patients
with OTSCC. There were no statistically significant rela-
tionships between methylation and survival identified,
when methylation from individual probes or methylation
averaged across the two probes were used (HR = 1.08,
95% CI: 0.65-1.82, P = 0.76 for averaged methylation for
the whole TCGA cohort, and HR = 1.27, 95% CI: 0.56-
2.88, P = 0.57 for averaged methylation for only the
OTSCC TCGA subset).
Thus, in an independent, external heterogeneous

HNSCC cohort assessed by an orthogonal quantitative
methodology, we confirmed the infrequent methylation
events for the loci examined. RUNX3 methylation was
not a prognostic marker in the TCGA cohort.

Discussion
Due to the known limitations of non-quantitative meth-
odology, we evaluated biomarkers frequently reported to
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be hypermethylated in HNSCC with three quantitative
methodologies, in order to identify meaningful correla-
tions with patient outcome. In contrast to much of the
published literature, the majority of loci interrogated in
our cohort displayed infrequent or no significant methy-
lation. Independent external validation of these findings
was provided by the TCGA cohort of HNSCC samples
that were assessed by an orthogonal quantitative meth-
odology. Our findings suggest that previous reports may
have overestimated the frequency of significant methyla-
tion events with the use of non-quantitative but highly
sensitive methodology. Furthermore, this study high-
lights that the use of quantitative methodology to detect
significant methylation events impacts upon the identifi-
cation of meaningful clinicopathological correlations.
In HNSCC, DNA methylation of a wide number of genes

has been reported, with considerable variation in the fre-
quency of detected events. For example, promoter methy-
lation of DAPK1 and RASSF1A have been reported to
occur with frequencies between 7 and 81%, and 0 and 44%,
respectively, most commonly assessed by non-quantitative
MSP (Table 1) [9,27,36,38,45,60,63,68]. Whether variability
has arisen due to methodological or anatomical subsite dif-
ferences is difficult to assess due to the use of heteroge-
neous cohorts. For example, in a cohort of 41 laryngeal
squamous cell carcinomas, 76% (31/41) of the samples
demonstrated methylation of DAPK1 and 32% (13/41) of
the samples demonstrated methylation of RASSF1A [68].
In comparison, in 47 oral cavity tumors, a frequency of
30% for DAPK1 and 38% for RASSF1A were reported [29].
Even lower frequencies of methylation have been reported
in a heterogeneous HNSCC cohort, where DAPK1 methy-
lation was detected in 12.5% (4/32) samples (excluding two
samples with methylation additionally found in matched
normal, indicating background methylation or contamin-
ation), and 0% (0/32) of samples demonstrated methylation
of RASSF1A [36]. In our examination of a single head and
neck subsite, using quantitative methodologies, we did not
find evidence for frequent methylation of either DAPK1
or RASSF1A. The lower than reported frequency of
events detected within our OTSCC cohort was exter-
nally validated in the heterogeneous TCGA head and
neck cohort (Table 3).
With the use of four orthogonal methodologies, our

results demonstrate that one cause for the variability in
the frequency of reported methylation events is likely
due to the method of assessment of methylation events.
Though highly sensitive, techniques such as MSP are
well known to be prone to generating false positive results
due to the presence of incomplete bisulfite conversion,
primer dimer formation, nonspecific primer binding and
the subjective nature of determining adequate band inten-
sity representative of a methylated amplicon [11-13]. The
limitation of highly sensitive non-quantitative MSP versus
quantitative methodology has previously been reported to
impact on clinical correlations [98]. Non-quantitative
methodology provides no mechanism to account for the
detection of low level methylation that can arise from nor-
mal infiltrating cells or stromal tissue. In comparison,
MS-HRM and SMART-MSP are highly sensitive, semi-
quantitative methodologies that provide an advantage for
PCR-based assays with the use of melting curve analysis
(MCA) [97,99]. MCA can minimize the inclusion of false
positives, allows the quantification of homogeneous
methylation, and facilitates the detection of heterogeneous
methylation [100].
Gel electrophoresis resolution of generated PCR prod-

ucts from the SMART-MSP analysis permitted the concur-
rent investigation of whether the use of a non-quantitative
methodology may have artificially contributed to the higher
frequency of promoter methylation being reported. Using
both PCR amplification and MCA to analyze samples for
evidence of DAPK1 promoter methylation, we found that
82% (41/50) of samples demonstrated evidence of methyla-
tion. Thus, if reported in isolation, these results would be
supportive of the literature. However on quantification,
samples demonstrated a median quantity of methylation of
0.0015% (range 0 to 1.320%), with only one sample demon-
strating methylation above 1%. Furthermore, gel electro-
phoresis of products demonstrated similar sized bands for
insignificant levels of methylation as well as unamplified
DNA, emphasizing the limitations of non-quantitative but
highly sensitive methodology. Thus, quantification of
methylation levels is an important consideration for the
identification of significant methylation events and the in-
terpretation of correlative analyses.
Not surprisingly, quantification of methylation influ-

enced the total number of significant events identified
defined by the a priori cut-off criteria. However, the use
of quantification introduces a number of assumptions.
Firstly, the choice of cut-off level is arbitrary and as-
sumes low-level methylation is always irrelevant. The
correlation between methylation levels and its impact on
gene expression is under investigation, with recent stud-
ies demonstrating that the quantity of methylation that
alters gene expression differs according to gene and tis-
sue histotype [101]. Our study sought to investigate the
significance of methylation as an isolated biomarker,
with the use of a cut-off to ensure exclusion of methyla-
tion events that arose from normal tissue or were below
the sensitivity of the assays used. Secondly, quantitative
methodology may not be necessary to identify clinical
correlations if the tissue examined demonstrates uniform
high levels of methylation that has biological impact.
Our analyses also attempted to account for the poten-

tial impact of heterogeneous methylation. Heteroge-
neous methylation is a complex phenomenon suggestive
of epigenetic instability due to incomplete methylation
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of alleles; however, it is poorly understood and variably de-
tected by existing methodologies [102]. Future research is
required to assess methylation levels at the allelic level to
enable a comprehensive understanding [103]. Our results
demonstrated that if heterogeneous methylation was ig-
nored, then the frequency of reported methylation events
for RUNX3 would have been consistent with the literature.
However, pyrosequencing results indicated that a large
number of these heterogeneous methylation events were
not substantially greater than background levels of methy-
lation. Nevertheless, it is important to note that bisulfite
pyrosequencing has limitations quantifying methylation,
as methylation is averaged at each CpG site and the
amount of templates showing methylation cannot be de-
duced [14].
External validation of our results was provided by in-

terrogation of the methylation status of the TCGA head
and neck samples. While comparison with a heteroge-
neous HNSCC cohort is difficult, as well as comparisons
across different loci, our findings were quite similar in
regard to the frequency of methylation events identified
overall. The absolute differences in the frequency of
methylation events between cohorts may have arisen
due to anatomical subsite differences in methylation
profiles, the limitation of the smaller size of our cohort
overall to detect methylation events, the challenges of
identifying and quantifying heterogeneous methylation
that may be undetected even with MS-HRM and
SMART-MSP, and significantly, the different loci exam-
ined within similar regions.
Understanding the specific role of promoter DNA

methylation in carcinogenesis is complex and many issues
require further research. These include the need to identify
which genes according to tissue types that have transcrip-
tion altered by a specific threshold quantity of methylation,
to identify if methylation alters gene expression [101]. The
identification of appropriate promoter regions or key CpG
dinucleotides that influence transcription for individual
genes is also important [104,105]. Though the use of high
throughput methylation analyses have rapidly advanced
the field, a thorough understanding of the limitations of
each platform is critical. For example, the HM450K probes
require hybridization over 50 base pairs, which limits the
identification of heterogeneous methylation and inform-
ative single CpG sites [104,106]. Validation and translation
of putative methylated biomarkers into clinical practice
requires the use of reproducible, appropriately sensitive,
quantitative methodology.
Overall, we do not suggest that one method of DNA

methylation assessment is necessarily superior. However,
quantification of methylation is an important consider-
ation to eliminate very low levels of methylation that are
unlikely to confer biological impact, and also to minimize
the inclusion of false positives. Ultimately, the choice of
methodology is likely to impact the interpretation of the
results.

Conclusions
In conclusion, in a cohort of OTSCC, we demonstrated
that there is limited evidence of DNA hypermethylation
at significant quantity or frequency for many genes pre-
viously reported to be commonly methylated in HNSCC.
Our results presented here and recently presented for
other cancers [84], suggest that one reason for the over-
estimation of the frequency of significant methylation
events is from the use of non-quantitative methodology.
Non-quantitative methylation analyses in the literature
for HNSCC should be cautiously interpreted.

Methods
Patient information
The patient cohort of 131 OTSCC patients has been de-
scribed previously [96]. Briefly, patients included con-
sisted of those who we could confirm had OTSCC, had
comprehensive clinicopathological and outcome data
available, and had pre-treatment FFPE blocks containing
invasive squamous cell carcinoma. Of these, 115/131 pa-
tient samples had sufficient DNA for bisulfite modifica-
tion and methylation analyses.

DNA extraction, bisulfite modification and preparation of
control DNA
A hematoxylin and eosin stained slide representative of
each pretreatment tumor specimen was labeled by an
expert oral pathologist for areas of invasive tumor. Two
millimeter representative cores were punched to extract
DNA. After deparaffinization with xylene and daily pro-
teinase K digestion over three days at 56°C, DNA was ex-
tracted using the QIAamp DNA Blood Mini Kit (Qiagen,
Hilden, Germany). A pre-analytical quality-assurance poly-
merase chain reaction (QA-PCR) [107] was performed that
demonstrated the presence of 300 to 600-bp fragments,
confirming the quality of DNA was adequate for methyla-
tion assessment. For the generation of a dilution series
of control DNA standards, fully methylated human
genomic DNA (FMD, Merck Millipore, Billerica, US)
was purchased, and secondary whole genome amplifica-
tion (WGA) product was used as unmethylated DNA.
The primary WGA product was generated using the
Illustra GenomiPhi V2 DNA Amplification Kit (GE
Healthcare, Little Chalfont, UK) and then purified with the
QIAquick PCR Purification Kit (Qiagen, Hilden, Germany),
according to the manufacturers’ instructions. Tumor DNA
and control DNA were quantified using the Qubit 2.0
Fluorometer (Life Technologies, Invitrogen, Oregon, US).
Bisulfite modification of one microgram of input DNA
was performed according to the manufacturer’s instruc-
tions with the Methyl Easy Xceed kit (Human Genetic
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Signatures, Sydney, Australia) and eluted into two ali-
quots of 50 μL, to make a theoretical concentration of
10 ng/μL.

Methylation sensitive high resolution melting (MS-HRM)
Methylation was assessed in samples initially with MS-
HRM [108]. Amplifiable bisulfite modified FMD was
normalized against bisulfite modified unmethylated
DNA (WGA) using a real-time quantitative PCR assay
that amplified a CpG dinucleotide free region of the
COL2A1 gene. Standard dilutions of FMD and WGA
were made to 50%, 25%, 10% and 5%. Primers, reaction
mixtures and conditions are listed for each promoter re-
gion interrogated in Additional file 2: Table S1. MS-HRM
analyses were performed on each tumor sample at least in
duplicate, with duplicates of the DNA methylation stan-
dards, FMD, WGA and non-template control (NTC). Ini-
tially, 50 patient samples were assessed for each gene, and
then the analysis was extended to the rest of the cohort
if any methylation was identified. Heterogeneous
methylation was determined as previously described
[14,15,100]. Briefly, heterogeneous methylation refers to
the overall different patterns of methylation that can be
observed on any given allele [14], similar to that of gen-
etic mosaicism [109]. When homogeneous methylation
is assessed by MS-HRM, melting curves replicate that
observed for the FMD or the dilution series of stan-
dards. In contrast, when heterogeneous methylation is
present, melting curve analysis reveals complex melting
patterns as a consequence of heteroduplex formation
[14]. If methodology is not specifically chosen to assess
the presence of heterogeneous methylation, it will re-
main undetected. Thus in these instances, the quantity
of methylation reported actually represents the mean
level of methylation averaged across the entire number
of CpG dinucleotides assessed within the amplicon. Im-
portantly, MS-HRM can identify but not quantify het-
erogeneous methylation.

Sensitive-melting analysis after real time-methylation
specific PCR (SMART-MSP)
We sought to confirm a subset of our findings with a sec-
ond methodology, and concurrently investigate potential
reasons for the discordance between our MS-HRM find-
ings and reported literature. SMART-MSP is a quantita-
tive adaption of MSP, which is readily performed with the
added benefit of a melting curve analysis step for quality
control [97]. The primers for DAPK1 were located within
the same region interrogated by the MS-HRM primers
and produced a 61-bp amplicon. Due to the requirements
of primer design, the SMART-MSP primers were located
downstream of the MS-HRM primers. PCR cycling and
HRM analysis were performed on a Rotor-Gene Q
(Qiagen). Each assay was performed with duplicates of
the bisulfite modified standard dilution series of FMD
and WGA (50%, 25%, 10%, 5%, 1% and 0.1%), tumor
samples, NTC and unmodified genomic DNA. The pri-
mer sequences, reaction mixtures and conditions are
listed in Additional file 2: Table S2.

Quantification of methylation using Sensitive-melting
analysis after real time-methylation specific PCR
(SMART-MSP)
The quantity of input DNA of the FMD, WGA and each
tumor sample was calibrated against a CpG dinucleotide
free region of the COL2A1 gene. The raw run data for
COL2A1, DAPK1 and RASSF1A were generated by the
Rotor-Gene Q (Qiagen) and exported into LinRegPCR
(version 2012.3.0.0) for the estimation of amplification
efficiency, after accounting for bias introduced by vari-
able baseline fluorescence [110]. The proportion of
methylated templates was then quantified according to
methodology previously described [111].

Gel electrophoresis analysis
Four microliters of the SMART-MSP product were re-
solved on a 3.5% agarose gel stained with SYBR Safe
(Invitrogen), at 80 mV over 1.5 hours.

Bisulfite pyrosequencing
The preliminary statistical analysis of the MS-HRM re-
sults indicated a significant correlation with worse out-
come for samples demonstrating mostly heterogeneous
methylation of RUNX3 and ABO. Thus, as MS-HRM
cannot quantify heterogeneous methylation, bisulfite pyro-
sequencing analyses were also performed for these genes.
Bisulfite pyrosequencing can quantify the averaged methy-
lation level for each individual CpG dinucleotide within a
region of interest [14]. MS-HRM was repeated with the
reverse MS-HRM primer containing a 5′-biotin label, and
products of duplicates were pooled for bisulfite pyrose-
quencing [100]. Forward pyrosequencing primers, the in-
terrogated sequence and dispensation order are listed in
Additional file 2: Table S3. Analyses were performed on a
PyroMark Q96 instrument (Qiagen, Hilden, Germany)
with PyroMark Gold Q96 SQA Reagents (Qiagen) accord-
ing to manufacturer’s instructions, and data was analyzed
with the Pyro Q-CpG software (Qiagen, version 1.0.9).

TCGA data and pre-processing
The TCGA database of head and neck cancers was
accessed for publically available methylation data assessed
by the Infinium HumanMethylation450 beadchip array
(HM450K, Illumina inc., San Diego, US).
Methylation data from Level 1 raw IDAT files were ob-

tained from the heterogeneous TCGA HNSCC samples
(http://cancergenome.nih.gov/; HM450K download date
24 June 2013; clinical data download date 22 July 2013).

http://cancergenome.nih.gov/
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Utilizing R software (version 3.0.1; http://cran.r-project.
org/), background correction and probe specific correc-
tion with SWAN normalization was performed utilizing
Methylumi and Minfi packages found in Bioconductor
[112-114]. Probes mapping to common variant SNPs or
non-unique mappings were removed from the analysis,
leaving 330,557 probes for the downstream analysis
[115]. Our MS-HRM amplicons interrogating the APC,
BRCA1, CDH1, CDH13 and MLH1 genes, overlapped with
CpG probes assessed by the HM450K. For the seven genes
(ABO, ATM, DAPK1, RASSF1A, MGMT, ERCC1 and
RUNX3) that did not have overlapping CpGs on the
HM450K, the two probes immediately flanking upstream
and downstream of our MS-HRM amplicon were assessed.
A β-value greater than 0.2 was used to define the presence
of significant methylation [116].

Statistical analysis
In order to account for the sensitivity of assays utilized
and background methylation from normal stroma, sig-
nificant methylation was defined a priori as a quantity
10% and greater for MS-HRM, and 15% and greater for
pyrosequencing. A higher cut-off was chosen for pyrose-
quencing to ensure that only significant quantities of
methylation were included on the basis that unmethylated
DNA controls (WGA) demonstrated quantities of methyla-
tion up to 8% at individual CpG sites (see Additional file 2:
Table S4).
As heterogeneous methylation can be identified but

not quantified on MS-HRM analysis [100], two analyses
were performed: one for samples with an estimated level
of methylation 10% and greater while excluding samples
with heterogeneous methylation, and the second analysis
included all heterogeneously methylated samples in the
same category.
Following bisulfite pyrosequencing which can quantify

the average methylation at individual CpG dinucleotides
for both homogenously and heterogeneously methylated
samples, correlation with patient outcome was investi-
gated. The analysis included only samples that had 15%
and greater mean methylation on pyrosequencing, or for
samples with insufficient DNA for pyrosequencing, those
with 10% and greater methylation on MS-HRM were also
included.
The Kaplan-Meier product-limit method was used to

estimate OS and PFS. OS was defined as the time (in
years) from the date of diagnosis to the date of death
from any cause. PFS was considered only for patients
treated with curative intent and was defined as the time
(in years) from the date of diagnosis to the date of pro-
gression (loco-regional or distant) or death from any
cause. A close-out date of 31 January, 2011, was set for
the purpose of analysis. Associations between the pres-
ence of methylation and survival outcome were assessed
using the exact Log-rank test and Cox proportional haz-
ards regression, to estimate hazard ratios (HR) and asso-
ciated 95% confidence intervals (95% CIs). P values
<0.05 were regarded as statistically significant.

Additional files

Additional file 1: Figure S1. Representative heat maps for the HM450K
probes that overlap MS-HRM amplicons for the TCGA HNSCC cohort.
These heat maps represent methylation of A) APC and B) CDH1, which
both demonstrate low levels or no methylation detected for the
examined probes. The key in the top left of the figure indicates the
β-value, of which the scale of increasing methylation values is indicated
from 0% (0) methylation (red) to 100% (0.1) methylated (bright yellow).
A β-value >0.2 is considered a significant quantity of methylation.
Figure S2. Representative heat maps for the HM450K probes that flank
MS-HRM amplicons for the TCGA HNSCC cohort. These heat maps represent
methylation of A) DAPK1 and B) RASSF1A, which demonstrate low levels or
no methylation (red) detected for the examined probes.

Additional file 2: Table S1. MS-HRM primers, reaction mixtures, and
conditions for selected loci. Table S2. SMART-MSP primers, reaction
mixtures and conditions for DAPK1 and RASSF1A. Table S3. Pyrosequencing
primers, interrogated sequence and dispensation order for ABO and RUNX3.
Table S4. Methylation levels detected in the unmethylated control DNA
(WGA), assessed by pyrosequencing.
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