MEETING ABSTRACT

FGF signalling inhibition in ESCs drives rapid genome-wide demethylation to the epigenetic ground state of pluripotency

Gabriella Ficz¹, Timothy A Hore¹, Fatima Santos¹, Heather J Lee¹, Wendy Dean¹, Julia Arand², Felix Krueger³, David Oxley⁴, Yu-Lee Paul¹, Jörn Walter², Simon J Cook⁵, Simon Andrews³, Miguel R Branco^{1,6}, Wolf Reik^{1,6,7*}

From Birminghm Cancer Epigenetics Conference; Translational Opportunities Birmingham, UK. 16 May 2013

Genome-wide erasure of DNA methylation takes place in primordial germ cells (PGCs) and early embryos and is linked with pluripotency. Inhibition of Erk1/2 and Gsk3ß signalling in mouse embryonic stem cells (ESCs) by small molecule inhibitors (called 2i) has recently been shown to induce hypomethylation. We show by whole-genome bisulphite sequencing that 2i induces rapid and genome-wide demethylation on a scale and pattern similar to that in migratory PGCs and early embryos. Major satellites, intracisternal A particles (IAPs) and imprinted genes remain relatively resistant to erasure. Demethylation involves oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), impaired maintenance of 5mC and 5hmC and repression of the de novo methyltransferases (Dnmt3a, Dnmt3b) and Dnmt3L. We identify a Prdm14 and Nanog binding cisacting regulatory region in *Dnmt3b* that is highly responsive to signalling. These insights provide a novel framework for understanding how signalling pathways regulate reprogramming to an epigenetic ground state of pluripotency.

Authors' details

¹Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK. ²Department of Biological Sciences, Institute of Genetics/Epigenetics, University of Saarland, Saarbrüken, Germany. ³Bioinformatics Group, Babraham Institute, Cambridge CB22 3AT, UK. ⁴Proteomics Research Group, Babraham Institute, Cambridge CB22 3AT, UK. ⁵Signalling Programme, The Babraham Institute, Cambridge, CB22 3AT, UK. ⁶Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK. ⁷Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK.

Published: 19 August 2013

* Correspondence: wolf.reik@babraham.ac.uk

¹Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK Full list of author information is available at the end of the article

doi:10.1186/1868-7083-5-S1-S2

Cite this article as: Ficz et al.: FGF signalling inhibition in ESCs drives rapid genome-wide demethylation to the epigenetic ground state of pluripotency. Clinical Epigenetics 2013 5(Suppl 1):S2.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

) BioMed Central

Submit your manuscript at www.biomedcentral.com/submit

© 2013 Ficz et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.