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by low-dose ionizing radiation
Jihye Park1†, Hae‑June Lee2†, Yu Kyeong Han3, Keunsoo Kang1 and Joo Mi Yi3* 

Abstract 

Background Environmental exposure, medical diagnostic and therapeutic applications, and industrial utilization 
of radionuclides have prompted a growing focus on the risks associated with low‑dose radiation (< 100 mGy). Current 
evidence suggests that such radiation can induce epigenetic changes. Nevertheless, whether exposure to low‑dose 
radiation can disrupt endothelial cell function at the molecular level is unclear. Because endothelial cells play crucial 
roles in cardiovascular health and disease, we aimed to investigate whether low‑dose radiation could lead to differen‑
tial DNA methylation patterns at the genomic level in endothelial cell (EC) lines.

Methods We screened for changes in DNA methylation patterns in primary human aortic (HAECs) and coronary 
artery endothelial cells following exposure to low‑dose ionizing radiation. Using a subset of genes altered via DNA 
methylation by low‑dose irradiation, we performed gene ontology (GO) analysis to predict the possible biological 
network mediating the effect of low‑dose radiation. In addition, we performed comprehensive validation using meth‑
ylation and gene expression analyses, and ChIP assay to identify useful biomarkers among candidate genes for use 
in detecting low‑dose radiation exposure in human primary normal ECs.

Results Low‑dose radiation is sufficient to induce global DNA methylation alterations in normal EC lines. GO analysis 
demonstrated that these hyper‑ or hypo‑methylated genes were linked to diverse biological pathways. Our findings 
indicated a robust correlation between promoter hypermethylation and transcriptional downregulation of four genes 
(PGRMC1, UNC119B, RERE, and FNDC3B) in response to low‑dose ionizing radiation in HAECs.

Conclusions Based on these findings, the identified genes can serve as potential DNA methylation biomarkers 
for the assessment of cardiovascular risk upon exposure to low‑dose radiation.

Keywords DNA methylation, Low‑dose radiation, Human aortic endothelial cells (HAECs), Methylation biomarker, 
Assessment of cardiovascular risk
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Background
The health risks of low-level exposure to ionizing radia-
tion (IR) are thought to be primarily related to several 
types of cancer in directly exposed populations including 
survivors of the atomic bomb explosion in Japan [1–3]. 
Radiation-induced heart disease as a consequence of 
direct damage caused by high-dose thoracic radiother-
apy has been acknowledged for several decades [4, 5]. 
The increased emphasis on low-dose radiation risks has 
grown with environmental, medical diagnostic, thera-
peutic exposures, and industrial applications of radiation, 
prompting attention to these concerns [6, 7].

According to the guidelines of the International Com-
mission on Radiological Protection (ICRP), individuals 
susceptible to recurrent radiation exposure risk, such as 
healthcare and nuclear industry workers, are commonly 
subject to monitoring and limitations on effective doses. 
The recommended threshold is 100  mSv every 5  years 
(equivalent to 20 mSv per year), with a maximum allow-
ance of 50  mSv in any given year [8, 9]. The estimation 
of risks associated with detrimental effects of exposure 
to low-dose radiation (LDR) was done by extrapolating 
data derived from high-dose radiation (HDR) exposure, 
employing a linear model without a threshold. Accumu-
lating evidence indicates that living organisms, includ-
ing humans, may exhibit different responses to low-dose 
radiation (LDR) compared to high dose radiation(HDR) 
[10]. There is little doubt that intermediate and high 
doses of ionizing radiation (> 100  mSv), administered 
acutely or over an extended period, lead to adverse effects 
in humans, including the development of cancer. Brenner 
et al. provided a list of approximate mean doses relevant 
to societal low-dose radiation exposures and low-dose 
radiation risk estimation (ranging from 3 to 30 mSV) in 
most radiological examinations [6]. Understanding the 
implications of low-dose radiation remains socially rel-
evant and encompasses various issues, including cancer 
screening tests, the future of nuclear power, occupational 
radiation exposure, manned space exploration, and con-
cerns related to radiological issues.

The Life Span Study conducted on Japanese atomic 
bomb survivors presented evidence for an increased 
risk of cardiovascular disease at lower dose levels, spe-
cifically below 5  Gy, and with mean doses significantly 
less than 0.5 Gy [11, 12]. The Life Span Study data, how-
ever, did not reveal any notable nonlinear association of 
the radiation dose–response with cardiovascular dis-
ease mortality. However, the specific form of the dose–
response relationship, especially at doses below 0.5  Gy, 
remains uncertain [12]. Therefore, the magnitude of car-
diovascular disease risk remains uncertain at low doses 
of radiation (< 0.1  Gy), typically encountered in medi-
cal diagnostic exposures. Although experimental and 

epidemiological evidence has established a relationship 
between exposure to low-dose IR and the development of 
solid cancers and leukemia, the relationship between the 
long-term risk of cardiovascular disease and low-dose 
radiation exposure remains unclear [13].

Endothelial cells (ECs) play a pivotal role in the car-
diovascular system. However, the presence of cardiovas-
cular risk factors diminishes their function. Because of 
their strategic anatomical location between the circulat-
ing blood and the vessel wall, ECs actively regulate vas-
cular structure and function. EC dysfunction is a crucial 
starting point for various types of circulatory diseases 
[14]. The heart is considered the most etiologically rel-
evant target tissue for ischemic heart disease, and the 
dose to the heart is often used in the analysis of radia-
tion-induced ischemic heart disease [5]. The critical role 
of vascular ECs in circulatory diseases suggests that large 
arteries (e.g., the aorta and carotid) may also be etiologi-
cally relevant targets.

Epigenetic mechanisms are adaptable genomic param-
eters capable of altering genome function in response 
to environmental effects [15]. Additionally, they offer a 
mechanism to reliably propagate gene activity states from 
one generation of cells to the next [16]. Epigenetic events 
are recognized for their role in regulating gene expression 
during development and differentiation and in response 
to environmental stimuli, including IR [15]. Epigenetic 
mechanisms regulate gene expression mainly through 
DNA methylation, histone modification, and alteration of 
nucleosome positions along the DNA [17]. An increasing 
body of evidence suggests that epigenetics offers signifi-
cant potential for developing biological markers to pre-
dict the vulnerability of subjects exposed to specific risks 
and identify individuals more susceptible to developing 
diseases [18]. Recently, the biological or genome-wide 
impact of IR has sparked increasing interest in epigenetic 
alterations [19]. In previous studies, we showed that IR 
induces hypomethylation in several types of cancers [20, 
21]. In addition, although there is a general agreement 
on the negative impact of high doses of radiation and on 
the mechanisms of cell injury, the biological effects and 
mechanisms of the response to low-dose IR, including 
through exposure to diagnostic imaging, remain poorly 
understood.

To understand the epigenetic impact of low-dose IR, in 
this study, we explored its influence on global genome-
wide methylation profiles in normal EC lines; the Illu-
mina HumanMethylationEPIC BeadChip array platform 
was employed for methylation profiling, encompassing 
99% of the RefSeq genes [22]. This technology enables the 
comprehensive analysis of differential global DNA meth-
ylation. This study provides valuable insights into the 
DNA methylation changes induced by low-dose radiation 
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in normal ECs, offering potential methylation biomark-
ers to assess the risk of radiation exposure and diseases, 
including cardiovascular disease.

Materials and methods
Cell culture, drug treatment, and irradiation
Human aortic endothelial cells (HAECs) and human cor-
onary artery endothelial cells (HCAECs) were purchased 
from Lonza Group Ltd. (Walkersville, MD, USA) and 
cultured in endothelial growth medium-2 microvascu-
lar medium (Lonza) at 37 °C and 5%  CO2 in a humidified 
incubator.

Irradiation
We seeded 5 ×  105 HAECs or HCAECs in 100  mm cul-
ture dishes. The cells were exposed to gamma (γ) rays 
through the “aircenter” mode after refreshing the culture 
medium. For LDR radiation, cells were exposed to radia-
tion in a  CO2 incubator at a dose rate of 6 mGy/h for 0.1 
(~ 16.7 h) or 0.5 Gy (~ 83.3 h) with a 137Cs (370 GBq) irra-
diator (Chiyoda Technol Corp., Tokyo, Japan) in a facil-
ity specialized for low-dose radiation at the DIRAMS, 
South Korea. For HDR, ranging from 2 to 8 Gy, the cells 
were also exposed to radiation at a dose rate of ~ 2  Gy/
min using a BIOBEAM 8000 (Gamma Service Medical 
GmbH, Germany) with a 77.33TBq 137Cs source at room 
temperature. For experimental analysis, the cells were 
harvested 48 h after the completion of irradiation.

HumanMethylationEPIC BeadChip array analysis
Genome-wide DNA methylation levels at approximately 
850,000 CpG sites were determined using the Infin-
ium HumanMethylationEPIC BeadChip Kit (Illumina), 
according to the manufacturer’s instructions. Raw data 
were analyzed using the Minfi package in R [23]. The 
degree of DNA methylation at each CpG site was repre-
sented by beta (β)-values, which are used to estimate the 
methylation level and range from 0 (unmethylated) to 1 
(fully methylated). To identify the differentially methyl-
ated CpG sites between the control and test groups, we 
discarded sites with β-values < 0.1. CpG sites located 
within 1500 bp of the transcription start site (TSS) were 
used in this study.

Gene ontology analysis
The potential functions of genes proximal to the differ-
entially methylated CpG sites were inferred using Metas-
cape (https:// metas cape. org/ gp/ index. html) [24]. The top 
500 CpGs, either hypermethylated or hypomethylated, 
exhibited the largest differences in β-values between the 
control and test groups.

Network analysis
Network analysis of selected target genes was per-
formed using the STRING database (https:// string- db. 
org/). STRING functions as both a database and a visu-
alization platform, offering insights into protein–pro-
tein interactions.

Methylation‑specific PCR
DNA was extracted from HAECs and HCAECs fol-
lowing the standard phenol–chloroform extraction. 
Bisulfite modification of genomic DNA was performed 
using the EZ DNA Methylation Kit (Zymo Research). 
For methylation-specific PCR (MSP) and quantita-
tive methylation analyses, we referred to a previously 
described procedure [25]. The primer sequences used 
are listed in Table S1 (Additional file 1).

Bisulfite sequencing
One microgram of genomic DNA from each sample 
was bisulfite-converted using the EZ DNA Methyla-
tion Kit (Zymo Research), following the manufacturer’s 
protocol. Bisulfite-modified DNA was PCR-amplified, 
gel-purified, and subcloned into the pCRII-TOPO vec-
tor (Invitrogen). At least five to seven clones were ran-
domly selected and sequenced on an ABI3730xl DNA 
analyzer to ascertain the methylation patterns of each 
locus. The primer sequences used for bisulfite sequenc-
ing are listed in Table S1 (Additional file 1).

Quantitative real‑time reverse transcription PCR
Total RNA was isolated from the control and irradiated 
samples of HAECs and HCAECs using TRI-Solution 
(BioScience Technology) following the manufacturer’s 
protocol. RNA quantity was measured using a Nan-
oDrop 2000/2000c instrument (Thermo Fisher Scien-
tific), and 1  μg of total RNA was reverse-transcribed 
into cDNA using the iScript™ cDNA Synthesis Kit (Bio-
Rad). For the expression studies, primers were designed 
using the Primer3 web tool (http:// frodo. wi. mit. edu/ 
prime r3) and are listed in Table  S1 (Additional file  1). 
Quantitative real-time reverse transcription PCR (qRT-
PCR) was performed on a CFX96™ Real-Time PCR 
Detection System (Bio-Rad) using SYBR Green Master 
Mix (Thermo Fisher Scientific). The expression levels of 
target genes were normalized against actin levels, and 
all relative quantifications of expression levels were cal-
culated using the ∆∆Ct method.

Western blot analysis
The cells were lysed in a lysis buffer. Equal amounts of 
total protein were loaded onto 4–12% SDS–PAGE gels 
and transferred onto PVDF membranes (GE Healthcare 

https://metascape.org/gp/index.html
https://string-db.org/
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Life Sciences). The membranes were blocked with 5% 
skim milk dissolved in TBS containing 0.02% Tween 20 
and incubated overnight at 4  °C with specific primary 
antibodies. The membranes were subsequently incu-
bated with horseradish peroxidase-conjugated second-
ary antibodies. Protein bands were visualized using the 
Fusion FX5 system (Vilber Lourmat). The following 
primary antibodies were used: anti-DNMT1 (Abcam), 
anti-DNMT3A (Cell Signaling Technology), anti-
DNMT3B (Santa Cruz), anti-DNMT3L (Santa Cruz), 
anti-MBD4 (Santa Cruz), anti-MBD2 (Santa Cruz), 
anti-MeCP2 (Santa Cruz), and anti-Actin (Proteintech).

Chromatin immunoprecipitation analysis
Chromatin immunoprecipitation (ChIP) assay was per-
formed as described previously [26]. PCR was performed 
using a C1000 Thermal Cycler (Bio-Rad), and the ChIP 
primers are listed in Table  S1 (Additional file  1). An 
anti-DNMT1 antibody (Invitrogen) was used for the 
immunoprecipitation of DNMT1-associated chromatin 
fragments.

Statistical analysis
Statistical analyses were performed using the GraphPad 
Prism software version 9.0 (https:// www. graph pad. com). 
The results are presented as the mean ± standard devia-
tion (SD). Student’s t test was performed to calculate sta-
tistical significance. P values < 0.05 were considered to 
indicate significant differences.

Results
Global DNA methylation changes induced by IR in HAECs 
and HCAECs
To study the effects of low-dose radiation on DNA meth-
ylation patterns across the genome, we selected HAECs 
and HCAECs. Initially, we investigated the impact of IR 
treatment on normal HAECs and HCAECs to assess its 
influence on the expression of established regulators of 
DNA methylation, including DNA-methyltransferase 
1, 3A, 3B, and 3L (DNMT1, DNMT3A, DNMT3B, and 
DNMT3L), methyl-CpG-binding domain proteins 2 and 
4 (MBD2 and MBD4), and methyl CpG-binding protein 
2 (MeCP2). Western blot analyses revealed a notable 
increase in the protein levels of numerous DNA meth-
ylation regulatory factors in cells exposed to varying IR 
doses (2, 4, 6, and 8  Gy), suggesting that IR treatment 
induces alterations in global DNA methylation (Addi-
tional file 1: Fig. S1). Nonetheless, we focused on inves-
tigating whether low-dose IR could induce global DNA 
methylation changes in HAECs and HCAECs. Therefore, 
we examined protein expression levels in cells exposed to 
low-dose IR (0.1 and 0.5 Gy) using western blot analysis. 
A significant increase was observed in the protein levels 

of most of the DNA methylation regulatory factors in 
cells subjected to 0.1 Gy irradiation. This finding suggests 
that low-dose IR is potent enough to induce global DNA 
methylation alterations in both HAECs and HCAECs 
(Fig. 1).

Genome‑wide DNA methylation profiles induced 
by low‑dose IR in HAECs and HCAECs
To evaluate the actual DNA methylation changes at the 
genome-wide level in HAECs and HCAECs, we used 
the HumanMethylationEPIC BeadChip platform devel-
oped by Illumina. This advanced platform targets 850,000 
CpG sites in the most biologically relevant regions of the 
human methylome. The methylation levels at individual 
CpG sites were quantified as continuous variables. Using 
this platform, we performed an extensive investigation of 
distinct DNA methylation patterns in response to vary-
ing low-dose radiation levels (0.1, 0.5, 2, and 6 Gy) in two 
separate EC types.

We identified substantial alterations in DNA methyla-
tion levels among irradiated HAECs and HCAECs com-
pared to that in the controls. These changes encompassed 
both hypermethylation and hypomethylation events, 
with statistical significance confirmed using an adjusted 
P-value threshold of 0.001 (Benjamini–Hochberg cor-
rection). To explore the differential DNA methylation 
patterns between irradiated HAECs or HCAECs and 
controls, we implemented β-value = 0.1 as a filtering cut-
off criterion. We detected 1064 hypermethylated and 392 
hypomethylated probes, signifying distinct methylation 
patterns in irradiated HAECs, specifically at a low dose 
(0.1 Gy), compared to the controls (Fig. 2A). In addition, 
we detected 482 hypermethylated and 573 hypomethyl-
ated probes in the irradiated HCAECs (Fig. 2B). To gain 
insights into the overall distribution of these hypermeth-
ylated and hypomethylated loci, we analyzed their occur-
rence within the promoter, intergenic region, gene body, 
exons, and other regions (Fig. 2).

Promoter regions were delineated as spanning 1500 bp 
upstream of the transcriptional start site (TSS), encom-
passing exon 1. Intergenic regions were defined as 
genomic areas that did not fall within the scope of 
other specified classes. In the irradiated HAECs, dif-
ferentially methylated regions were distributed across 
various gene regions in the following order: promoter 
region (78%) > intergenic region (17.2%) > gene body 
(2.8%) > other and exon (2%) for hypermethylated 
regions, and promoter region (76.5%) > intergenic region 
(20.7%) > gene body (1.5%) > other and exon (1.3%) for 
hypomethylated regions (Fig.  2A). In the methylation 
profiles of irradiated HCAECs, differentially methyl-
ated regions were located in multiple gene regions and 
ordered as follows: promoter region (79.7%) > intergenic 

https://www.graphpad.com


Page 5 of 15Park et al. Clinical Epigenetics           (2024) 16:19  

region (16%) > gene body (3.1%) > other and exon (1.2%) 
for hypermethylated regions, and promoter region 
(79.1%) > intergenic region (18%) > gene body (1.4%) or 
other and exon (1.6%) for hypomethylated regions. Previ-
ous studies have highlighted the significant role of DNA 
methylation within the gene body in regulating tran-
scription [27] (Fig. 2B). Subsequently, we employed more 
stringent criteria, requiring a hypermethylation fold-
change > 3 and a hypomethylation fold-change < 3 in irra-
diated HAECs or HCAECs compared to the methylation 
profiles of controls. Hierarchical clustering revealed 1064 
CpG sites with differential methylation patterns, com-
prising 1064 hypermethylated and 392 hypomethylated 
sites in HAECs and 482 hypermethylated and 573 hypo-
methylated sites in HCAECs (Fig. 3A, B). These findings 
suggest that exposure to low-dose radiation can lead to 
global DNA methylation profile changes in HAECs and 
HCAECs.

Functional prediction of DNA methylation changes 
in HAECs or HCAECs treated with low‑dose radiation
A comparison of the differential CpG sites in HAECs or 
HCAECs irradiated with various doses demonstrated 
that 129 hypermethylated genes for HAECs and 12 for 
HCAECs and 12 hypomethylated genes for HAECs and 35 
for HCAECs were shared among the four radiation doses 

(0.1, 0.5, 2, and 6 Gy), with each dose of radiation possess-
ing its own set of unique genes (Fig. 3C, D). To understand 
the functional significance of hypermethylate.

d CpG sites in low-dose-irradiated HAECs and HCAECs, 
we conducted a gene ontology (GO) analysis using Metas-
cape (Fig. 3E, F). We conducted a GO analysis of the iden-
tified hypermethylated CpG sites in 0.1  Gy-irradiated 
HAECs and HCAECs using the Kyoto encyclopedia of 
genes and genomes (KEGG) database, which covers a wide 
range of biological processes, molecular functions, and cel-
lular components. Hypermethylated or hypomethylated 
CpG sites in low-dose-irradiated HAECs and HCAECs 
were associated with several pathways, including antigen 
processing and presentation, detection of chemical stimuli, 
olfactory transduction, and expression and translocation of 
olfactory receptors (Fig. 3E, F). Therefore, our data imply 
that hyper- or hypomethylated genes or CpG sites influ-
enced by low-dose radiation may contribute to potential 
biological networks, indicating that low-dose irradiation 
can affect normal ECs at the molecular epigenome level.

Correlation between promoter methylation 
and transcriptional expression of candidate genes 
in irradiated HAECs
While low-dose radiation can potentially trigger wide-
spread alterations in DNA methylation, the DNA 
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methylation profiles of only a limited number of genes 
in HAECs and HCAECs are available for further inves-
tigation, which makes it challenging to confirm whether 
these genes are actually affected by promoter DNA 
methylation after exposure to low-dose irradiation in 
HAECs or HCAECs. Thus, to experimentally validate 
whether these genes were regulated by promoter meth-
ylation changes, we used several strict criteria. Can-
didate genes should have (1) a typical CpG island in 
the promoter region for methylation, (2) the pattern of 
promoter methylation should be negatively correlated 
with its transcriptional expression, and (3) increase of 
DNMT1 distribution in the promoter regions of can-
didate genes upon low-dose irradiation. Based on these 
criteria, no genes were available for further methylation 
analysis of low-dose (0.1 Gy)-irradiated HCAECs. How-
ever, nine genes from the DNA methylation profiles of 
0.1  Gy-irradiated HAECs were available for experimen-
tal validation. We first aimed to validate whether these 
genes were hypermethylated in 0.1 Gy-irradiated HAECs 
compared with those in the control cells. For this anal-
ysis, we designed MSP primers located within the CpG 
islands of these genes and conducted an MSP analysis 
(Additional file 1: Table S1). Subsequently, we conducted 
an extensive conventional MSP analysis to examine the 
promoter methylation patterns of the candidate genes 
in both the control and irradiated HAECs. We examined 
the CpG islands of four genes (PGRMC1, UNC119B, 
FNDC3B, and RERE) in the UCSC database and found 
that a typical CpG island was located in the promoter 
region upstream of these genes (Fig.  4A). According to 
the DNA methylation profile, methylation was undetect-
able in the four genes (β-value = 0) but was significantly 
increased (β-value = 1) in 0.1  Gy-irradiated HAECs. 
To validate these data, we performed quantitative MSP 
analysis in irradiated HAECs and compared them with 
controls. Notably, four genes exhibited a significant 
increase in methylation levels in irradiated HAECs when 
compared with those in the control group. Remarkably, 
this increase in methylation commenced at low doses of 
radiation (0.1  Gy) in HAECs, implying that even low-
dose radiation was sufficient to trigger promoter hyper-
methylation of these genes in HAECs (Fig. 4B). Next, we 
confirmed the methylation levels of these four genes at 
the DNA sequence level using bisulfite sequencing analy-
sis, which revealed denser methylation of the four genes 
in irradiated HAECs compared with that in the controls. 
These findings strongly indicate that the DNA methyla-
tion levels of these four candidate genes increased in the 
irradiated HAECs compared to the control (Fig. 5).

To correlate promoter hypermethylation with the 
expression of these four genes in irradiated HAECs, 
we examined their transcriptional expression using 

qRT-PCR. Gene expression levels significantly decreased 
in HAECs irradiated with low-dose radiation (0.1  Gy) 
compared to those in the control group (Fig. 6). Our data 
suggest that low-dose radiation can effectively decrease 
gene expression by inducing promoter hypermethylation, 
confirming that these genes are strong candidates for 
hypermethylation induced by low-dose radiation.

Low‑dose radiation‑induced hypermethylated genes 
correlate with increasing levels of DNMT1 in their 
promoter regions
The expression of many proteins associated with DNA 
methylation, including DNMT1, increased in irradiated 
HAECs and HCAECs (Fig. 1). DNMTs are enzymes that 
are crucially involved in a key step in the DNA methyla-
tion process [17]. DNMT1 is predominantly responsible 
for DNA methylation in cancer cells [28, 29] and plays 
a pivotal role in sustaining aberrant promoter methyla-
tion. Having identified several hypermethylated genes 
induced by low-dose radiation in HAECs, we investigated 
whether these genes might have a direct association with 
the DNMT1 protein in terms of methylation changes fol-
lowing low-dose irradiation. Using ChIP assay, we exam-
ined the correlation between DNMT1 and CpG islands 
in the promoter region of each candidate gene in 0.1 Gy-
irradiated HAECs. We observed that DNMT1 levels 
were significantly increased in the promoter regions of 
most candidate genes (Fig. 7). These data provide robust 
evidence supporting a correlation between increased 
DNMT1 levels and DNA hypermethylation within the 
promoter regions of candidate genes, which, in turn, 
leads to decreased gene expression. Collectively, our 
validation strategy strengthens the notion regarding the 
potential biological significance of these newly identi-
fied genes that induce hypermethylation in response to 
low-dose radiation in HAECs. These findings suggest 
novel epigenetic functions of these previously unexplored 
genes in normal ECs.

Discussion
Industrial and scientific advances have increased the 
potential for radiation exposure across various facets 
of daily life. Concerns related to occupational radia-
tion exposure, the trajectory of nuclear power, manned 
space exploration, and radiological terrorism under-
score the need for a comprehensive understanding of 
the health hazards linked to low-dose radiation expo-
sure [6]. Additionally, individuals are exposed to low-
dose radiation during medical procedures for diagnostic 
purposes. According to the guidelines set forth by the 
ICRP, individuals at risk of recurrent radiation exposure 
include healthcare and nuclear industry professionals. 
These individuals are subject to monitoring and dose 
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limitations, with a recommended yearly limit of 20 mSv 
and a maximum allowable exposure of 50 mSv in any sin-
gle year, as well as an overall cap of 100 mSv every 5 years 
[9, 30].

DNA methylation, an epigenetic alteration, plays 
a pivotal role in an extensive array of biological pro-
cesses, including embryogenesis [31], X-chromosome 

inactivation [32], genomic imprinting [33], cell differen-
tiation [34], inhibition of transposable elements [35], and 
cognitive functions, such as learning and memory [36]. 
To carry out its functions in various processes, DNA 
methylation undergoes dynamic and regionally regulated 
changes in response to both internal and external signals. 
In this context, numerous studies have been performed 
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box represents a CpG dinucleotide. Black boxes represent methylated cytosines, and white boxes represent unmethylated cytosines
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to uncover the influence of IR on DNA methylation 
[37–40]. A common trend observed across multiple stud-
ies indicates that radiation frequently triggers localized 
hypermethylation of CpG islands while simultaneously 
inducing global hypomethylation of DNA [19, 41]. This 
similarity to the changes in DNA methylation observed 
during tumor development has sparked speculation 
about the potential contributions of radiation-induced 
CpG island hypermethylation to gene silencing and the 
role of global DNA methylation loss in promoting tum-
origenesis [39]. However, most of the aforementioned 
studies have focused on changes in DNA methylation 
following radiation doses exceeding 100 mSv. To the best 
of our knowledge, Newman et al. [42] investigated altera-
tions in DNA methylation in mice after a single low-dose 
X-ray exposure of 10 mGy.

Here, DNA methylation profiling was used to explore 
the potential influence of low-dose radiation on the ini-
tiation of endothelial dysfunction. We examined the 
DNA methylation profile of ECs in response to low-dose 
radiation under normal conditions. This is because EC 

dysfunction is a significant risk factor for both cardiovas-
cular diseases and diabetes mellitus [43]. We performed 
DNA methylation arrays using HAECs and HCAECs 
exposed to 100  mGy of low-dose radiation compared 
with higher doses (2 and 6  Gy) and controls. We also 
listed the genes potentially associated with endothe-
lial damage. Our findings indicate that the exposure 
of normal ECs to low-dose radiation induces a wide-
spread hypermethylation pattern, suggesting that even 
low-dose radiation can sufficiently trigger alterations in 
DNA methylation. Additionally, we confirmed the hyper-
methylation of several particularly intriguing genes in 
response to alterations employing multiple experimen-
tal validations, highlighting their potential as biomarkers 
for assessing the risks associated with low-dose radiation 
exposure.

In this study, a genome-wide DNA methylation 
array was useful to identify new genes induced by 
hypermethylation in response to low-dose radiation. 
We emphasize that these genes were newly discov-
ered to be hypermethylated in response to low-dose 
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IR, a correlation that was corroborated through vari-
ous experimental approaches, including qRT-PCR 
and MSP analyses. Additionally, we conducted ChIP 
assays to investigate the interaction between DNMT1 
and the promoter regions of candidate genes follow-
ing low-dose IR treatment, providing further evi-
dence for the transcriptional regulation of these genes 
by DNMT1. The presence of DNMT1 preference for 
methylated substrates, with a 5- to 30-fold bias, led 

to its recognition as the enzyme responsible for pre-
serving methylation patterns after DNA replication. 
Indeed, genetic knockout of DNMT1 in human cells 
results in an abnormal nuclear structure and disrupts 
the distribution of heterochromatin protein 1 [44]; this 
underscores the strong connection between these two 
processes. Subsequently, DNMT3a and DNMT3b were 
identified through EST database searches and proposed 
as enzymes responsible for de novo methylation [31].
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Fig. 7 Association between DNMT1 enrichment and the promoter regions of candidate genes in HAECs exposed to low‑dose radiation 
(0.1 Gy). A–D ChIP assays were performed to determine the levels of DNMT1 at the promoter regions of candidate genes (PGRMC1, UNC119B, 
FNDC3B, and RERE) in HAECs exposed to low‑dose radiation (0.1 Gy). GAPDH was used as a negative control. Cross‑linked and sheared chromatin 
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of the input chromatin, and the quantification of the associated chromatin in the ChIP samples was performed using qRT‑PCR. Statistical analysis 
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Progesterone (P4) receptor membrane component 1 
(PGRMC1) is a member of the membrane-associated P4 
receptor (MAPR) family and belongs to the cytochrome 
b5 (cytb5) protein group. This versatile protein performs 
a wide array of functions [45, 46]. Human PGRMC1 con-
tains predicted binding site motifs for Src homology 2 
(SH2) and Src homology 3 (SH3) domain-containing pro-
teins. In addition, it features multiple phosphorylation 
sites, including s57, t178, and s181, which are believed to 
modulate its activity [47]. On the folded protein surface, 
there is a juxtaposition of the SH3 target motif adjacent 
to s57, along with the SH2 target motifs containing Y139 
and T178/Y180/S181. This arrangement forms a poten-
tial proximity-stimulated tripartite signaling platform 
[47, 48]. Consequently, PGRMC1 serves as a key factor 
and an influential participant in numerous cellular signal-
ing pathways that regulate cell growth and proliferation. 
To our knowledge, this study represents a pioneering 
effort in identifying four genes (PGRMC1, UNC119B, 
RERE, and FNDC3B) as candidate methylation biomark-
ers for assessing the risk of low-dose radiation exposure.

We conducted a thorough literature search to identify 
the biological functions of confirmed low-dose radiation-
induced hypermethylation. UNC119 is a myristoyl-bind-
ing protein that facilitates the intracellular transportation 
of myristoylated cargo proteins to their respective func-
tional destinations [49]. The human UNC119 was initially 
discovered to be enriched in the retina and was desig-
nated as human retina gene 4 (HRG4) [50]. Truncation 
mutations in UNC119 are detected in human patients 
and can lead to retinal degeneration in transgenic mice 
[51, 52]. Mammalian genomes harbor two UNC119 
genes, UNC119A and UNC119B, although the functional 
distinctions between these two genes have yet to be fully 
elucidated.

RERE is prominently expressed in the brain and has 
been associated with numerous single-nucleotide poly-
morphisms (SNPs) identified in genome-wide association 
studies (GWAS) related to various brain disorders [53–
55]. The protein encoded by RERE plays a crucial role in 
transcriptional repression during embryonic develop-
ment, chromatin remodeling, and cell survival. Recently, 
the interaction of RERE with G9A, a histone methyl-
transferase known for its involvement in transcriptional 
repression, suggested that RERE may play a significant 
role in gene regulation.

Fibronectin type III domain containing 3B (FNDC3B), 
also known as a factor in adipocyte differentiation 104 
(FAD104), was initially recognized as a regulator of adi-
pocyte differentiation [56]. Subsequent gene-targeting 
studies provided evidence that FNDC3B plays a role in 
cell proliferation, adhesion, spreading, and migration 
in FNDC3B-deficient mice [57]. FNDC3B has also been 

identified as an oncogene that promotes cell migration in 
hepatocellular carcinoma [58, 59]. However, the prognos-
tic significance and functional role of FNDC3B in cancer 
remain unexplored.

Recently, Lee et al. [60] reported the potential impact of 
PGRMC1 on cardiac metabolism under energy-deficient 
conditions. Their data indicate that PGRMC1 apparently 
regulates cardiac metabolism by influencing the bal-
ance between glucose and fatty acid utilization based on 
nutritional status and nutrient availability in the heart. 
However, the roles of UNC119B, RERE, and FNDC3B in 
cardiovascular diseases are not known. Our study is the 
first to report the association of epigenetic changes in 
these genes with cardiovascular diseases. According to 
network analysis using the STRING software, we identi-
fied a possible biological network of the four gene can-
didates related to low-dose irradiation. Each gene was 
associated with various genes involved in diverse biologi-
cal functions (Additional file 1: Fig. S2). Recently, another 
research group explored changes in DNA methylation in 
the blood of healthy individuals exposed to CT radiation. 
Their findings suggested that there were no significant 
alterations in genome-wide DNA methylation levels [61]. 
In line with the impact of low-dose radiation on ECs, Lee 
et al. recently reported the impact of low-dose radiation 
(less than 100 mGy) on ECs in both diabetic and non-dia-
betic conditions, focusing on their role in cardiovascular 
health using RNA sequencing. Their findings suggested a 
potential link between low-dose radiation and cardiovas-
cular diseases [62]. Expanding upon insights from prior 
studies, our data strongly reinforce the notion that low-
dose radiation can trigger molecular changes in ECs, par-
ticularly within the domain of epigenetic modifications, 
including DNA methylation. Through a comprehensive 
validation process, we identified several genes that have 
the potential to serve as biomarkers for detecting the 
risks associated with low-dose exposure.

Conclusion
In summary, we explored the effects of low-dose radia-
tion on DNA methylation profiles in immortalized 
normal HAECs and HCAECs. We demonstrated that 
low-dose radiation can sufficiently induce global DNA 
methylation changes in terms of the levels of key pro-
teins associated with DNA methylation. Consistent 
with these data, using a DNA methylation array, we 
further verified that low-dose radiation induces global 
DNA methylation changes. Furthermore, we identified 
genes whose promoters exhibited hypermethylation 
induced by low-dose radiation, which led to reduced 
transcriptional gene expression. We also validated these 
promoter methylation changes at the genomic level 
using bisulfite sequencing. We observed an increase in 



Page 14 of 15Park et al. Clinical Epigenetics           (2024) 16:19 

the level of DNMT1 in the promoter regions of these 
genes in low-dose irradiated HAECs compared to con-
trols. Taken together, our data strongly suggest that 
low-dose radiation can effectively induce alterations in 
DNA methylation in normal ECs. This discovery led us 
to propose that these newly identified genes could serve 
as valuable DNA methylation biomarkers for detecting 
the risk of radiation exposure or the development of 
diseases, including cardiovascular diseases.
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