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Abstract 

Epigenetic modifications are involved in the remodeling of the tumor microenvironment (TME) and the regulation of 
immune response. Nonetheless, the role of histone H4 methylation (H4M) modification in the TME and immune regula-
tion of hepatocellular carcinoma (HCC) is unknown. As a result, the purpose of this research is to discover H4M-mediated 
modification patterns and their effects on TME and immunologic characteristics in HCC. A total of 2305 samples were 
enrolled from 13 different cohorts. With the help of consensus clustering analysis, three distinct H4M modification patterns 
were identified. The cell-infiltrating characteristics of TME under these three patterns were highly consistent with their 
enriched biological processes and clinical outcome. The H4Mscore was then created using principal component analysis 
algorithm to quantify the H4M modification pattern of each individual tumor and was systematically correlated with rep-
resentative tumor characteristics. We found that analyzing H4M modification patterns within individual tumors could pre-
dict TME infiltration, homologous recombination deficiency (HRD), intratumor heterogeneity, proliferation activity, mRNA 
stemness index, and prognosis. The group with a low H4Mscore had an inflamed TME phenotype and a better immuno-
therapy response, as well as a better survival outcome. The prognostic value of H4Mscore was validated in three internal 
cohorts and five external cohorts, respectively. In external immunotherapy cohorts, the low H4Mscore was also linked to 
an enhanced response to anti-PD-1/L1 and anti-CTLA4 immunotherapy and a better prognosis. This study revealed that 
H4M modification played an important role in forming TME diversity and complexity. Evaluating the H4M modification 
pattern of individual tumors could help us learn more about TME and develop more effective immunotherapy strategies.
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Introduction
Hepatocellular carcinoma (HCC) is a global problem that 
endangers human health due to the extremely high num-
ber of new and fatal cases [1]. The heterogeneity of HCC 
has received increased attention in recent years, placing 
it at the forefront of all solid tumors [2]. Because of het-
erogeneity, HCC can be classified into different molecu-
lar subtypes with distinct biological characteristics and 
treatment responses [3, 4]. Surgical removal is the back-
bone treatment for patients with HCC, but most patients 
have lost the opportunity to accept an operation when 
they are attender. Unfortunately, the prognosis of HCC is 
very poor, with only 18% of patients surviving five years 
after diagnosis [5].

As a complex ecosystem comprised of cancer cells, 
stromal cells, infiltrated immune cells and extracel-
lular matrix, the tumor microenvironment (TME) has 
been widely acknowledged to play a pivotal role in car-
cinogenesis, metastatic dissemination, and anti-tumor 
immunotherapy response [6–8]. Due to the innate anti-
inflammatory immune contexture for tolerance to intes-
tinal antigens and predisposition induction of cancer 
cells, the TME of HCC will always be perceived as sup-
pressive [9, 10]. Cancer cells and multiple extracellular 
components interplay in direct or indirect ways to elicit 
special biological changes in epigenetic features, thereby 
leading to tumor progression and immune evasion [11–
13]. Immune checkpoint blockers have so far been effec-
tive for only a fairly small percentage of patients [14, 15]. 
Therefore, it is urgent to discover more effective bio-
markers for immunotherapy.

Epigenetic modifications have exhibited robust effects 
on tumor progression and anti-tumor immune response 
[16–18]. As a core member of histone modification, 
histone H4 methylation (H4M) is dynamic and revers-
ible to some extent, which can be regulated by multiple 
methyltransferases, demethylases, and binding proteins 
and is closely related to multiple cancer phenotypes, 
covering cancer cell proliferation, migration, and drug 
resistance [19–21]. The dysregulation of H4M modifica-
tion is a meaningful signature for multiple malignancies 
[22–25]. For the cancer genome or specific oncogenes, 
increasing evidence confirms that the reduction of H4M 

modification is closely associated with oncogene acti-
vation and causes adverse outcomes in breast, colon, 
bladder, ovarian, and hematological cancers [26–28]. 
However, the role of H4M modification in the carcino-
genesis and progression of HCC has received scant 
attention.

Previous studies have confirmed the vital role of H4M 
modification in cancer progression and its capabil-
ity as a therapeutic target. However, the specific coor-
dinated effects of H4M regulators in HCC need to be 
further explored. Therefore, a multi-omics analysis was 
performed to identify H4M-related modification pat-
terns and their effects on TME and immune regulation 
in HCC. Three distinct H4M modification patterns were 
identified, and as a result, a significant difference was 
analyzed in TME and immunological characteristics. 
Furthermore, an H4M-related biomarker was created to 
further quantify the degree of individual H4M modifica-
tion and reveal the pivotal role of H4M modification in 
HCC. This study highlighted the specific changes in TME 
and immunological characteristics induced by H4M 
modification and characterized a novel signature for 
HCC risk prediction.

Methods
Hepatocellular carcinoma data acquisition 
and preprocessing
This study is summarized by a flowchart, as depicted in 
Fig.  1A. HCC and adjacent liver tissues were obtained 
from patients who had undergone radical resection 
between November 2010 and November 2020 at Nan-
fang Hospital, Southern Medical University. A total of 
30 patients were enrolled in this study. Samples were 
obtained with the consent of the patients and the hos-
pital ethics committee (approval document number: 
NFEC‐2018‐004). The human HCC cell line Huh‐7 was 
obtained from the Chinese Academy of Sciences’ Type 
Culture Collection. Cells were cultured with DMEM 
(C11995500BT; Gibco) with 10% FBS (A3160801; Gibco) 
and incubated at 37 °C in a humidified atmosphere with 
5% CO2.

Additionally, publicly available data were converged 
from the Cancer Genome Atlas (TCGA, https://​portal.​

(See figure on next page.)
Fig. 1  Expression and genomic variation landscape of 36 H4 methylation (H4M) regulators in hepatocellular carcinoma (HCC). A The main workflow 
of this study. B The mutation frequency of 36 H4M regulators in 371 patients with hepatocellular carcinoma from the TCGA-LIHC cohort. C Copy 
number variation (CNV) frequency of H4M regulators in TCGA-LIHC. D The interaction diagram of proteins involved in histone methylation, histone 
demethylation, regulation of response to DNA damage stimulus, regulation of epigenetic gene expression, regulation of DNA repair, regulation 
of mitotic cell cycle, and regulation of adaptive immune response. Red solid lines represent protein–protein interactions; pale blue dotted lines 
represent GO processes. The color bar from red to blue depicts the fold change of protein levels from increasing to decreasing. The significance of 
the pathways represented by − log (p value) was shown by color scales with dark purple as the most significant. E Principal component analysis 
of the 36 H4M regulators in normal and HCC patients (blue indicates normal and red indicates HCC patients). F Expression of 36 H4M regulators 
between normal and HCC patients. *, **, and *** mean p < 0.05, < 0.01, and < 0.001, respectively

https://portal.gdc.cancer.gov/
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gdc.​cancer.​gov/) and International Cancer Genome Con-
sortium (ICGC, https://​dcc.​icgc.​org/) databases. Eight 
HCC cohorts (GPL3921-GSE14520, GPL571-GSE14520, 

GSE109211, GSE 116174, GSE54236, GSE63898, 
GSE76427, NODE-OEZ005255) from the Gene Expres-
sion Omnibus (GEO, https://​www.​ncbi.​nlm.​nih.​gov/​

Fig. 1  (See legend on previous page.)

https://portal.gdc.cancer.gov/
https://dcc.icgc.org/
https://www.ncbi.nlm.nih.gov/gds
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gds) and the National Omics Data Encyclopedia (NODE, 
https://​www.​biosi​no.​org/​node/​index) were employed 
as validation cohorts. Two immunotherapeutic cohorts 
were brought into this study to explore the value of the 
H4M scoring system in predicting response to immune 
checkpoint blockers. The IMvigor210 cohort, an open 
anti-PD-L1 immunotherapy cohort, included 310 
patients with advanced urothelial carcinoma treated 
with atezolizumab [29]. The GSE91061 cohort included 
65 patients with melanoma treated with anti-PD1 and 
anti-CTLA4 antibodies [30]. These two immunotherapy 
cohorts were incorporated into this study. The RNA 
sequencing data were accurately converted to transcripts 
per kilobase million format. Batch effects were reduced 
by the "ComBat" algorithm using the "sva" R package 
[31]. All baseline information on the available data is 
summarized in Additional file 14: Table S1.

Unsupervised clustering for 36 H4M regulators
Multi-studies yielded 36 genes as H4M-initial biomark-
ers, including 14 writers, 6 erasers, and 16 readers (Addi-
tional file  14: Table  S2). Based on the expression of 36 
H4M regulators, an unsupervised clustering algorithm 
was used to identify unique H4M modification patterns 
and classify patients. The "ConsensusClusterPlus" pack-
age was applied to execute this consistent clustering with 
1,000 repetitions to guarantee the stability of classifica-
tion [32]. Then, the reliability of this classification was 
confirmed by Kaplan–Meier survival curves and princi-
pal component analysis.

Implementation of gene set variation analysis (GSVA)
In order to determine the difference in biological pro-
cesses among distinct H4M modification patterns, a 
GSVA analysis was implemented. By mapping our gene-
expression data into the gene set "h.all.v7.5.1.symbols" 
from the Molecular Signatures Database (MSigDB, 
http://​www.​gsea-​msigdb.​org/​gsea/​msigdb/​index.​jsp), rel-
ative enrichment score was calculated using the "GSVA" 
R package [33, 34].

Estimation of HCC TME cell infiltration
Single sample gene set enrichment analysis was applied 
to quantify the abundance of immune cells in the TME 
of HCC [35]. All HCC samples could obtain an enrich-
ment fraction for each immune-infiltrating cell according 
to their gene-expression map. A total of 23 immune-
infiltrating cells were identified, including T cells, B cells, 
neutrophils, macrophages, dendritic cells, and so on. The 
markers used to characterize 23 immune-infiltrating cells 
were originated from the research by Charoentong [36].

Identification of hub genes and functional annotation
First, the "limma" R package was utilized to identify 
DEGs between different H4M modification patterns 
according to the cutoff criteria: p value < 0.001 and 
|logFC|≥ 1. Then, weighted gene co-expression net-
work analysis (WGCNA) was conducted to determine 
gene modules connected with distinct H4M modifica-
tion patterns using the R package “WGCNA”. Addition-
ally, a scatterplot of gene significance versus module 
membership in particular modules was plotted to fur-
ther obtain hub genes.

The R package "clusterProfiler" was used to conduct 
Gene Ontology (GO) functional enrichment analy-
sis for 36 H4M regulators and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) functional enrichment 
analysis. The "CBNplot" R package was utilized to 
explore pathways or gene regulatory relationships.

Machine learning and the generation of H4Mscore 
signature
In order to quantify the H4M modification pattern of 
each individual tumor, a scoring system was developed. 
The H4M-related scoring system, which we termed the 
H4Mscore. Certain steps were taken to establish the 
H4M signature. At first, a consensus clustering algo-
rithm was used to define the number of gene clusters 
using the hub genes discovered by WGCNA analy-
sis. Then, univariate Cox (uniCox) regression analysis 
was performed for these hub genes. The genes with 
significant prognostic value were selected for further 
analysis. Subsequently, overfitting genes were mini-
mized by the Least Absolute Shrinkage and Selec-
tion Operator (LASSO) regression algorithm. Finally, 
principal component analysis (PCA) was applied for 
modeling. Both principal components 1 and 2 were 
chosen to act as signature scores. Then, the H4Mscore 
was defined using the formula [37, 38]: H4Mscore = ∑ 
(PC1i + PC2i), where i is the expression of H4M-related 
feature genes.

RT‐qPCR
Total RNA from clinical samples and HCC cell line 
was isolated using TRIzol reagent (15596018; Thermo 
Fisher Scientific). Then, the extracted RNA was reverse‐
transcribed to cDNA using an Evo M‐MLV RT kit 
(AG11711; Accurate Biology) according to the manu-
facturer’s instructions. Next, cDNA was quantified 
by real‐time PCR using SybrGreen qPCRmasterMix 
(4309155; Thermo Fisher Scientific) on a StepOnePlus 
real‐time PCR system (Applied Biosystems). The 18S 
rRNA was chosen as the reference gene, and the 2−ΔΔCt 
formula was used to calculate the expression of the 

https://www.ncbi.nlm.nih.gov/gds
https://www.biosino.org/node/index
http://www.gsea-msigdb.org/gsea/msigdb/index.jsp
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target genes. The primer sequences are summarized in 
Additional file 14: Table S3.

Cell transfections, CCK8 assays, and transwell assays
All siRNA oligonucleotides were synthesized by RiboBio, 
and the siRNA duplex sequences are presented in Addi-
tional file  14: Table  S4. After 24  h of culture in 12-well 
plates, siRNAs were transfected into the cells. Following 
the manufacturer’s instructions, all transfections were 
carried out using jetPRIME reagent (114–15; Polyplus). 
Cell viability was assessed by the CCK‐8 (CK04; Dojindo 
Laboratories) assay. The cells (500 cells/well) were seeded 
in 96‐well plates. Cell viability was measured after adhe-
sion at 24, 48, 72, and 96  h. For Transwell assays, cells 
were detached and suspended in medium with 10% FBS 
and seeded (5 × 104/well) into the upper chamber. The 
bottom chamber was filled with 20% FBS. After incuba-
tion for 48 h, cells that migrated to  the lower filter sur-
faces were fixed with polyformaldehyde for 20  min, 
stained with 0.1% crystal violet for 20  min, and digi-
tally imaged under a  high magnification of microscope 
(100×).

Immunotherapy response prediction
From the TIDE database (http://​tide.​dfci.​harva​rd.​edu/), 
the predicted immune response information, TIDE 
score, microsatellite instability (MSI) score, immune 
exclusion score, and immune dysfunction score of HCC 
patients were obtained. Likewise, immunophenoscore 
was retrieved from the Cancer Immunome Atlas (TCIA, 
https://​tcia.​at/​home).

Statistical analysis
Wilcoxon tests were used to compare differences 
between two groups, while Kruskal-Wallis tests were 
utilized to compare differences between three or more 
groups. T test was used to compare paired samples. Cor-
relation coefficients and p values were conducted by 
Spearman and Pearson correlation analyses. The "surv-
cutpoint" function of the "survminer" R package was 
used to determine the optimal cutoff value for separat-
ing HCC patients into high and low H4Mscore groups. 
One-class logistic regression algorithm was utilized to 
calculate the stemness index [39]. All statistical p values 
were two-sided, with p < 0.05 as statistically significant. 
All data processing was carried out using R software (ver-
sion 4.1.3).

Results
Landscape of genetic variation of H4M regulators in HCC
Among 364 HCC samples, genetic alterations in 31 H4M 
regulators were detected in 71 samples, with a lower fre-
quency of 19.51%. The forms of somatic mutation were 

multitudinous. Missense mutation was the most com-
mon type of mutation, followed by frameshift deletion 
(Fig.  1B). Further analyses revealed conspicuous muta-
tion co-occurrence relationships involving TDRD3, 
DNMT3A, LRWD1, PHF2, PHF8, PRMT1, PRMT6, 
PRMT7, CRB2, KDM4B, KDM1A, JMJD6, FANCD2, and 
KMT5B (Additional file  1: Fig. S1A). Moreover, wide-
spread CNV alterations were found in 36 H4M regulators 
(Fig. 1C). The chromosome locations of 36 H4M regula-
tors are present in Additional file 1: Fig. S1B. Then, uni-
versally positive correlations between CNV and mRNA 
expression levels of H4M regulators were discovered 
(Additional file  1: Fig. S1C). DNA methylation on gene 
regulatory sequences was known to inhibit gene tran-
scription, whereas low levels of DNA methylation led to 
transcriptional activation. Therefore, the negative cor-
relation between DNA methylation levels and mRNA 
expression was common. This phenomenon could be 
found in most of the H4M regulators (Additional file 1: 
Fig. S1D). Additionally, methylation levels of the majority 
of H4M regulators were lower in HCC samples compared 
to normal samples, which may contribute to the higher 
expression of these regulators in HCC tissues (Additional 
file 1: Fig. S1E).

Then, we elucidated widespread protein interac-
tions that existed within the same type of regulator and 
between distinct types of regulators. Notably, the GO 
enrichment analysis revealed that these regulators are not 
only marked by histone methylation-related processes 
but also involved in immune response, cell cycle, and 
DNA damage repair. This may indicate the mechanisms 
of how these regulators affect the development of HCC 
(Fig. 1D). Based on the expression of 36 H4M regulators, 
HCC samples may be significantly distributed as either 
normal samples or HCC samples (Fig. 1E). This supports 
the notion that the expression pattern of H4M regula-
tors may differ significantly between normal and HCC 
samples. Notably, except for PRMT6, the mRNA expres-
sion of other H4M regulators was significantly higher in 
HCC samples than in peritumoral tissues (Fig.  1F). The 
results of immunohistochemical staining confirmed the 
significant high expression of JMJD6, PHF8, PRMT3, 
PRMT5, RAD23A, SMARCA4, SMYD5, and TP53BP1 
(Additional file  2: Fig. S2A-H). To some extent, the dif-
ferential distribution of gene expression levels could 
be attributed to the variation of their copy number and 
DNA methylation changes [40]. In addition, the mRNA 
expression of the majority of H4M regulators differed sig-
nificantly between four microenvironment subtypes and 
six immune-related subtypes (Additional file 1: Fig. S1F, 
Additional file 3: Fig. S3A; Additional file 14: Tables S5, 
S6) [41, 42]. Also, significant expression differences of 36 
H4M regulators were found between HCC patients with 

http://tide.dfci.harvard.edu/
https://tcia.at/home
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TP53 mutation and those without TP53 mutation (Addi-
tional file 3: Fig. S3B, Additional file 14: Table S7). Then, 
numerous positive correlations were discovered between 
H4M regulators and the proliferation score, HRD score, 
and intratumor heterogeneity score, particularly between 
H4M regulators and the proliferation score (Additional 
file  3: Fig. S3C–E; Additional file  14: Table  S8). These 
findings confirmed that these regulators play a crucial 
role in the microenvironment remodeling and malignant 
progression of HCC.

H4M modification patterns mediated by 36 regulators
UniCox regression analysis showed that 24 H4M regula-
tors were significantly related to the prognosis of HCC 
patients (Additional file 4: Fig. S4A). Integrative Kaplan–
Meier analysis suggested that 30 H4M regulators, includ-
ing ORC1 (Additional file  4: Fig. S4B) and FANCD2 
(Additional file 4: Fig. S4C), were significantly associated 
with the overall survival of HCC patients, whereas only 
KDM4B was protective (Additional file 14: Table S9). The 
findings suggested that H4M modification was closely 
associated with HCC prognosis.

Then, three RNA sequence data sets (TCGA-LIHC, 
ICGC-LICA, and ICGC-LIRI) were integrated into 
a meta-cohort for further analysis. Interestingly, the 
majority of the H4M regulators consistently exhibited 
positive correlations, with the exception of the correla-
tion between PHF8 and PRMT1, PRMT2, and KMT5A 
(Fig.  2A). The largest correlation coefficient (0.82) was 
found between FANCD2 and ORC1 (Additional file  14: 
Table S10). Additionally, almost all other H4M regulators 
exhibited significantly higher expression in the ORC1 
high expression group compared to the low expression 
group in the TCGA data set, except for TDRD3 (Addi-
tional file  4: Fig. S4D). This phenomenon could also be 
found between FANCD2 high and low expression groups 
(Additional file 4: Fig. S4E). These analyses demonstrated 
that the H4M regulators FANCD2 and ORC1 may serve 
as the hub of the entire network of H4M regulators in 
HCC. We further identified three potential modification 
patterns associated with H4M by conducting a consen-
sus cluster algorithm, including 183 samples in pattern 
A, 165 samples in pattern B, and 255 samples in pattern 
C (Fig. 2B). These patterns were designated as H4Mclus-
ter A-C, respectively (Additional file 14: Table S11). PCA 
analysis revealed that these patterns differed significantly 
(Fig. 2C). Kaplan–Meier analysis revealed survival prob-
abilities varied significantly from the H4Mcluster to the 
H4Mcluster, with H4Mcluster-B having the lowest sur-
vival rate (Fig.  2D). To further verify the existence of 
three H4M modification patterns, 1034 HCC samples 
from eight external cohorts were integrated as a valida-
tion cohort (Additional file  5: Fig. S5A-B). It was found 

that these three H4M modification patterns could be 
fully validated (Additional file  5: Fig. S5C-D, Additional 
file 14: Table S12). The above results confirmed the pres-
ence of three potential H4M modification patterns.

H4M modification pattern differences in clinical 
and biological features
Significant differences in clinical features were also found 
among the three patterns, including gender, TNM stage, 
and histologic grade (Fig.  2E). H4Mcluster-B exhibited 
the highest expression of 36 H4M regulators, which was 
consistent with its poor prognosis (Fig.  2F). The dif-
ference in constitutive and complementary hallmarks 
among the three patterns was revealed by GSVA analy-
ses (Additional file  14: Table  S13). Hallmarks enriched 
in H4Mcluster-A were relatively abundant in immune-
related processes. While H4Mcluster-B was primarily 
associated with cancer pathways and genomic variation. 
For H4Mcluster-C, enriched hallmarks were mainly 
related to metabolism (Additional file  4: Fig. S4F, Addi-
tional file 6: Fig. S6A-B). The highest scores for intratu-
mor heterogeneity, HRD, and proliferation were found 
in H4Mcluster-B (Additional file  6: Fig. S6C-E). It was 
hypothesized that H4Mcluster-A might have the strong-
est anti-tumor immune response, H4Mcluster-B may 
have more malignant biological behaviors, and H4Mclus-
ter-C is intermediate. Further analyses revealed the differ-
ences in typical cancer signatures among the three H4M 
modification patterns (Additional file  14: Table  S14). 
Immune responses were found to be significantly aug-
mented in H4Mcluster-A, whereas signaling associated 
with cancer progression and immunosuppression was 
found to be predominantly enriched in H4Mcluster-B 
(Additional file 6: Fig. S6F-G), confirming our hypothesis.

Tumor microenvironment and immune infiltration 
characteristics of distinct H4M modification patterns
The TME plays a vital role in the occurrence and devel-
opment of HCC. Based on the results of the ESTI-
MATE algorithm, we found a tremendous difference in 
HCC TME among three H4M modification patterns, 
whether in the aspect of stromal or immune compo-
nents (Fig.  3A–C). Moreover, the three H4M modifica-
tion patterns exhibited a substantial disparity in tumor 
purity (Fig.  3D). The above results indicated the pivotal 
role of H4M modification in TME remodeling. Fur-
ther analyses revealed robust differences in immune 
infiltration in HCC TME (Fig.  3E, Additional file  14: 
Table  S15). According to the constitution of immune 
cells, three H4M modification patterns presented definite 
immune infiltration characteristics. H4Mcluster-A had 
an immune-inflamed phenotype, with adaptive immune 
cell infiltration and immune activation; H4Mcluster-B 
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had an immune-suppressed phenotype, with abundant 
CD4+ T cell and Th2 cell infiltration; and H4Mcluster-
C was somewhere in the middle (Additional file  7: Fig. 
S7A). Then, another group of reported immune cells 

and immune function markers demonstrated similar 
enrichment differences between three H4M modifica-
tion patterns (Additional file 7: Fig. S7B), reinforcing the 
finding. Correlation analysis between 36 regulators and 

Fig. 2  Three H4M modification patterns and relative biological functions. A A network of correlation including H4M regulators in the meta-data 
cohorts. B Consensus matrix heatmap defining three H4Mclusters (k = 3) and their correlation areas. C PCA analysis indicated a significant difference 
in transcriptomes between the three subgroups. D Kaplan–Meier survival analysis for H4Mclusters. E Differences in clinical characteristics and 
expression levels of H4M regulators between the three distinct H4Mclusters. F Detailed expression landscape of 36 H4M regulators between three 
H4M modification patterns. *, **, and *** mean p < 0.05, < 0.01, and < 0.001, respectively
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Fig. 3  Correlations of tumor immune microenvironments and three H4M modification patterns in HCC. A-C Correlations between the three 
H4M modification patterns and TME score. D Correlations between the three H4M modification patterns and tumor purity. E Immune infiltration 
landscape in the three H4M modification patterns quantified by two types of immune-related signatures. F Correlation between the expression 
of 36 H4M regulators and the infiltration levels of 23 immune cells in TME. G Immune checkpoint differences among the three H4M modification 
patterns. *, **, and *** mean p < 0.05, < 0.01, and < 0.001, respectively
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infiltrating immune cells further confirmed that histone 
H4M modification was closely associated with immune 
infiltration in TME (Fig. 3F). Except for MSL3, PRMT2, 
KMT5A and PRMT1, most H4M-related regulators were 
negatively correlated with immune infiltration in TME, 
including CD8+ T cells and Th1 cells. These genes with 
a positive regulatory function may contribute to the pro-
motion of anti-tumor immune response. Also, previous 
reports have confirmed that the TME always be immu-
nosuppressive, and Th1/Th2 balance in CD4+  T cells is 
always dominated by the Th2 phenotype [43, 44]. In the 
present study, activated CD4+ T cells and Th2 cells were 
found to be significantly positively related to most H4M 
regulators. These results indicated that H4M modifica-
tion-mediated TME characteristics might generally be 
suppressed. Furthermore, we analyzed the gene expres-
sion differences in immune checkpoints among the three 
H4M modification patterns. Most immune checkpoint 
genes were found to be significantly overexpressed 
in H4Mcluster-B (Fig.  3G). This result indicated that 
H4Mcluster-B had greater immune tolerance and sup-
pression, which was consistent with earlier findings.

Construction of co‑expression networks and identification 
of H4M modification patterns‑associated gene 
co‑expression modules
According to the results of the difference analysis, 
1084 DEGs were identified between H4Mcluster-A 
and H4Mcluster-B, 665 DEGs were identified between 
H4Mcluster-B and H4Mcluster-C, and 34 DEGs were 
identified between H4Mcluster-A and H4Mcluster-C 
(Fig.  4A). After the removal of the overlapping genes, 
a total of 1223 genes were defined as DEGs character-
izing H4M modification patterns. A total of 7 distinct 
gene co-expression modules were generated by WGCNA 
analysis. The detailed analysis process is presented in 
(Additional file  7: Fig. S7C-E). The results confirmed 
that the turquoise module exhibited the strongest posi-
tive correlation with the H4Mcluster-B phenotype 
(R = 0.76, p = 1e-147) and negative correlation with the 
H4Mcluster-A (R = −  0.64, p = 1e-88) (Fig.  4B). Then, 
133 shared hub genes were extracted based on the gene 
significance and module membership correlation scatter-
plots (Fig. 4C, Additional file 7: Fig. S7F). Pathway analy-
sis revealed that they were predominantly enriched in 
cell cycle-related processes, which highlights the effects 
of H4M modification on tumor proliferation (Fig.  4D). 
Cell cycle checkpoint signaling played a pivotal role in 
the entire predicted regulatory network (Fig. 4E). Nota-
bly, the results of the uniCox regression analysis dem-
onstrated that all 133 genes were significantly associated 

with the adverse prognosis of HCC patients (Additional 
file 14: Table S16).

Validation of H4M modification patterns and construction 
of the H4M scoring system
To further comprehend the distinct effects generated by 
H4M modification in HCC, based on 133 selected DEGs, 
we successfully categorized HCC samples into three dis-
tinct genomic phenotypes via unsupervised clustering 
analysis and termed them H4M geneCluster A-C, respec-
tively (Fig. 5A). Survival analysis suggested the relatively 
worst prognosis in the H4M geneCluster-B (Fig. 5B). As 
expected, multiple clinical parameters exhibited differ-
ential distribution among three distinct genomic phe-
notypes and most of the 36 H4M regulators were also 
overexpressed in the H4M geneCluster-B (Fig. 5C, Addi-
tional file 7: Fig. S7G). In addition, the intratumor hetero-
geneity score, the HRD score, and the proliferation score 
were significantly higher in the H4M geneCluster-B, con-
firming its greater propensity for malignancy (Additional 
file  7: Fig. S7H-J). Collectively, robust differences were 
discovered between three distinct genomic phenotypes, 
whether in the landscape of clinical traits or degree of 
malignancy, which profoundly confirmed the three H4M 
modification patterns described previously.

Considering the heterogeneity of HCC and the diver-
sity of H4M modification, it was decided to construct a 
scoring system to quantify the H4M modification levels 
of individual cases. At first, the LASSO regression model 
was applied to 133 filtered hub DEGs (Fig.  5D). Conse-
quently, 39 feature genes were screened out (Fig. 5E). In 
the regulation network comprised of 39 feature genes, 
the cell cycle pathway is centrally located. Internal gene 
regulatory network in the cell cycle pathway was also 
inferred (Fig.  4G-H). Then, a 39-gene H4Mscore sys-
tem was constructed using the PCA algorithm. In accord-
ance with the prominent prognosis of H4Mcluster-B and 
H4M geneCluster-B, these two groups owned the highest 
H4Mscore (Additional file  8: Fig. S8A-B). These results 
demonstrated that H4Mscore could effectively reflect 
the H4M modification characteristics of individual HCC 
patients.

Prognosis and biological function relevance of H4Mscore 
in HCC
According to the Kaplan-Meier survival analysis, all HCC 
patients were divided into high- and low-H4Mscore 
groups, with the high-H4Mscore group having a signifi-
cantly poorer survival outcome (Fig.  5F). As the H4M 
score rises, the number of HCC-related deaths gradu-
ally increases. The 39 feature genes have relatively higher 
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Fig. 4  Identification of hub genes and functional annotation. A Differential analysis among three H4M modification patterns. B Heat map of the 
correlations between the module eigengenes and H4M modification patterns. The Pearson correlation coefficient and corresponding p value were 
displayed in each cell. C Scatterplots of correlation between MEturquoise membership and gene significance for H4Mcluster-B and H4Mcluster-A. 
D KEGG enrichment analysis for 133 hub genes identified by WGCNA analysis. E Enriched pathway regulatory network for 20 pathways. F KEGG 
enrichment analysis for 39 feature genes identified by LASSO regression analysis. G Enriched pathway regulatory network for 13 pathways. H The 
gene regulatory network for the cell cycle signaling pathway
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Fig. 5  Construction of H4M signature. A Consensus matrix heatmap defining three geneClusters (k = 3) and their correlation areas. B Kaplan-Meier 
survival analysis for H4M geneClusters. C The H4M modification patterns and other clinical characteristics were used as patient annotations. 
Differences in the expression levels of 133 hub genes were exhibited between the three distinct geneClusters. D-E The process of filtering genes 
by LASSO regression model. F Kaplan–Meier survival analyses for the high-H4Mscore and low-H4Mscore groups. G H4Mscore distribution, survival 
status of patients, and gene expression of 39 feature genes in H4M-related signature. H ROC curves measuring the predictive value of the H4Mscore 
signature. *, **, and *** mean p < 0.05, < 0.01, and < 0.001, respectively
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expression in the high-H4Mscore group (Fig.  5G). The 
area under curves (AUC) of ROC analysis for 1, 2, 3 and 5 
year were 0.71, 0.66, 0.67 and 0.70, respectively (Fig. 5H). 
Also, this prediction for survival outcome could be 
validated in different subgroups (Additional file  8: Fig. 
S8C-L). Surprisingly, eight external HCC cohorts con-
firmed the survival difference between groups with a 
high H4Mscore and those with a low H4Mscore (Addi-
tional file  9: Fig. S9A-H). To further validate the accu-
racy of the scoring system, we constructed a network of 
protein–protein interactions between 39 feature genes 
(Additional file  10: Fig. S10A). Then, seven core genes 
were selected by 12 algorithms for experimental valida-
tion (Additional file 10: Fig. S10B). It was found that the 
expression of these seven core genes was higher than that 
in adjacent tissues in the TCGA database (Additional 
file  10: Fig. S10C). Kaplan–Meier analysis showed that 
these genes were extremely related to the poor survival 
outcome of HCC patients (Additional file 10: Fig. S10D-
J). The results of qPCR suggested that all these genes 
were overexpressed in HCC tissues than adjacent tissues 
(Additional file  11: Fig. S11A-G). Consistently, relative 
siRNAs markedly inhibited the expression of seven core 
genes and decreased the proliferation and migration abil-
ity of HCC cell line (Additional file 12: Fig. S12A-I). The 
aforementioned results confirmed that H4Mscore was an 
excellent prognostic marker and had an extremely stable 
prediction efficiency for prognosis in HCC. As shown 
in the Sankey diagram, most patients in H4Mcluster-B 
belonged to H4M geneCluster-B and high-H4Mscore 
group, and patients from H4M geneCluster-B occupied 
a larger proportion in the high-H4Mscore group than 
in the low-H4Mscore group (Fig. 6A). In terms of clini-
cal characteristics, the low-H4Mscore group had a higher 
proportion of HCC patients in advanced or poorly differ-
entiated states (Fig. 6B). Further uniCox analysis revealed 
that H4Mscore and TNM stage were adverse prognostic 
factors, and multiCox analysis ulteriorly confirmed that 
H4Mscore and TNM stage were independent prognostic 
indicators (Fig. 6C). Combining multiple clinical data, we 
developed a nomogram to accurately predict the 1-, 3-, 
and 5-year survival rates of HCC patients (Fig. 6D). The 
calibration diagram confirmed the nomogram’s predicted 
value was close to reality (Fig. 6E). ROC analysis for the 
nomogram suggested the nomogram had a prominent 
efficiency in predicting prognosis of 1, 2, 3, and 5 years 
and the AUCs were 0.75, 0.68, 0.70, and 0.76, respectively 
(Fig. 6F).

Additional analysis revealed that H4Mscore corre-
lates positively with three cancer signatures, particularly 
the proliferation score (R = 0.91) (Additional file 13: Fig. 
S13A-C). Moreover, nearly all signatures associated with 
cancer progression demonstrated a robust distinction, 

and the majority of these signatures were enriched in 
the high-H4Mscore group (Additional file 13: Fig. S13D). 
Then, we detected differences in additional signature 
groups associated with cancer pathways and processes. 
It was found that most cancer-related pathways and phe-
notypes were primarily enhanced in the high-H4Mscore 
group (Additional file 13: Fig. S13E). This result was gen-
erally in accordance with the above signature and addi-
tionally suggested vast differences in cancer pathways. 
The stemness indices based on transcriptome data could 
effectively measure the level of tumor stemness [39]. 
In the present study, it was determined to be a hazard-
ous factor for the survival of patients with HCC and to 
have a significant positive correlation with H4Mscore 
(R = 0.43) (Additional file  13: Fig. S13F, Additional 
file  14: Table  S17). The results confirmed that the can-
cer stemness of the group with a high H4Mscore was 
stronger. Evidently, combined survival analysis revealed 
that enhanced cancer stemness negatively affected the 
prognosis of HCC patients, but it had a lower risk degree 
than a high H4Mscore (Additional file  13: Fig. S13G). 
We further analyzed the somatic mutation differences 
based on the differences in genomic signatures and 
found a higher mutation frequency in high-H4Mscore 
groups (Additional file  13: Fig. S13H). Moreover, the 
low-H4Mscore group had relatively stronger cytolytic 
activity and weaker immune suppression than the high-
H4Mscore group, which indicated that the  anti-tumor 
immune response was significantly fiercer in the low-
H4Mscore group (Additional file  13: Fig. S13E). Sig-
nificantly positive correlations were observed between 
H4Mscore and activated CD4+ T cells, as well as between 
H4Mscore and Th2 cells (Fig.  7A). Similarly, signifi-
cant differences in immune infiltration were discovered 
between groups with high and low H4Mscores. Immune 
suppression-related cells (activated CD4+ T cells and Th2 
cells) were extremely enriched in the high-H4Mscore 
group, which was consistent with its stronger immune 
suppression score (Fig.  7B). Also, immune check-
points presented significant differences between high-
H4Mscore and low-H4Mscore groups, including PDCD1 
(PD-1), CD274 (PD-L1), and CTLA4 (Fig. 7C). The afore-
mentioned study confirmed our hypothesis that individ-
uals with a high H4Mscore had a more potent immune 
suppressive effect.

The role of the H4Mscore in anti‑PD‑1/L1 immunotherapy
It has been demonstrated that blocking immune check-
points such as PD-1, CTLA4 and PD-L1 is promising and 
has led to significant advances in the treatment of HCC. 
In this study, significant differences in immune response-
related signatures and immune infiltration have been con-
firmed between groups with high and low H4Mscores. 
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Fig. 6  Clinical features of the distinct H4Mscore groups and nomogram construction. A Sankey plot showing the changes of H4Mclusters, H4M 
geneClusters, and H4M score. B Clinical characterization in low and high H4Mscore groups. The chi-square test was used to calculate statistical 
differences. C The uniCox and multiCox regression analyses of H4Mscore and clinical features. D The nomogram for predicting 1-, 3-, and 5-year OS 
based on H4Mscore signature and clinical stage. OS, overall survival. E Calibration for detecting nomogram at 1-, 3-, and 5-year OS. F The 1-, 2-, 3-, 
and 5-year time-dependent ROC curves for evaluating the nomogram
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It was further speculated that these two groups of HCC 
patients would respond differently to immunotherapy. 
The group with a low H4Mscore had a greater proportion 
of patients who responded to anti-PD-1 and anti-CTLA4 

immunotherapy, and the H4Mscore was higher in non-
responding HCC patients (Fig.  7D–E). Further analysis 
revealed that TIDE and immune exclusion score had sig-
nificant positive correlations with H4Mscore (Additional 

Fig. 7  The role of H4M modification patterns in immune infiltration and the response to immunotherapy. A Correlation between H4Mscore and 
immune infiltration. B Differences in immune infiltration between high and low H4Mscore groups. C Differences in immune checkpoints between 
high and low H4Mscore groups. D Differences in H4Mscore between the response and no response groups based on the TIDE database. E The 
proportion of patients who responded to immune checkpoint blocker therapy in the low or high H4Mscore groups. F Correlation analysis of 
H4Mscore and multiple immunotherapy markers. G-J The immunophenoscore differences between high and low H4Mscore groups. *, **, and *** 
mean p < 0.05, < 0.01, and < 0.001, respectively
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Fig. 8  Verifying the potential of H4Mscore as an immunotherapy biomarker in external immunotherapy cohorts. A Kaplan–Meier survival 
analyses for the high H4Mscore and low H4Mscore groups in the IMvigor210 cohort. B The H4Mscore difference between the CR/PR and SD/PD 
groups. CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease. C The proportion of patients who responded to 
immunotherapy in the low or high H4Mscore groups. D Differences in H4Mscore among distinct tumor immune phenotypes in the IMvigor210 
cohort. E Differences in PD-L1 expression between high and low H4Mscore groups. F Differences in tumor neoantigen burden (TNB) between 
high and low H4Mscore groups. G Predictive value of the H4Mscore and PD-L1 expression for immunotherapy response. H Kaplan–Meier survival 
analyses for the high and low H4Mscore groups in the GSE91061 cohort. I The proportion of patients that responded to immunotherapy in the low 
or high H4Mscore groups in the GSE91061 cohort
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file  14: Table  S18). Meanwhile, significant negative cor-
relations were found between H4Mscore and MSI score, 
which indicated the genome of the low-H4Mscore group 
was relatively unstable and was more likely to pro-
duce tumor neoantigen (Fig.  7F). These results based 
on the TIDE database suggested that anti-PD-1 and 
anti-CTLA4 immunotherapy were more effective in the 
low-H4Mscore group. Regardless of anti-PD-1 and anti-
CTLA4 monotherapy or combination therapy, the group 
with a lower H4Mscore demonstrated superior efficacy 
(Fig.  7G-J; Additional file  14: Table  S19). These results 
preliminarily confirmed our conjecture.

Then, we further investigated the value of H4Mscore 
in predicting response to multiple immunotherapies. 
Regretfully, there was a lack of an open-access HCC 
immunotherapy cohort with complete survival param-
eters and transcriptome data. For the time being, we 
could only confirm the utility of the H4Mscore in other 
cancer cohorts. In the IMvigor210 cohort, an anti-PD-
L1 metastatic urothelial cancer data set, survival analy-
sis suggested patients with a higher H4Mscore exhibited 
the worst prognosis and a lower response rate to immu-
notherapy (Fig.  8A–B). Next, we analyzed the relation-
ship between H4Mscore and different response statuses. 
It was found that patients with a disease release had a 
lower H4Mscore than those with disease stability or 
progression (Fig.  8C). According to the study by Dan-
iel S., tumors could be distinguished into three immu-
nophenotypes with significant immune infiltration 
and immunotherapy response differences, including 
immune-inflamed phenotype, immune–excluded pheno-
type, and immune-desert phenotype [45]. H4Mscore was 
found to be lowest in the immune-inflamed phenotype 
and highest in the immune-desert phenotype, which was 
consistent with their immunotherapy response (Fig. 8D). 
The level of PD-L1 expression had a certain value in pre-
dicting immunotherapy response, and it was found to be 
higher expressed in the low-H4Mscore group (Fig.  8E). 
Tumor neoantigen is produced by the  genetic muta-
tion of tumor cells and is only expressed in tumor cells, 
which has been demonstrated to be a crucial marker for 
predicting the  immunotherapy response [46, 47]. In our 
study, tumor neoantigen burden indicated a markedly 
prolonged survival and was found to be extremely higher 
in the low-H4Mscore group (Fig.  8F). Furthermore, the 
ROC curve revealed that H4Mscore had a better pre-
dictive effect on immunotherapy response than PD-L1 
(Fig. 8G). Patients with a low H4Mscore had a significant 
survival advantage in another melanoma cohort treated 
with anti-PD-1 and anti-CTLA4 inhibitors (GSE91061) 
(Fig. 8H). Similarly, patients with a low H4Mscore had an 
increased response rate, which was in accordance with 
the findings of the IMvigor210 cohort (Fig. 8I).

In conclusion, H4M modification was significantly cor-
related with HCC immunophenotypes, and H4Mscore 
was an excellent biomarker for predicting immunother-
apy response.

Discussion
Increasing evidence has enhanced our comprehension 
of the landscape of H4M modification in cancer occur-
rence and development, sparking our interest in the 
role of H4M modification in HCC. Nevertheless, the 
majority of the previous studies merely focused on sin-
gle H4M regulators or single biological processes. The 
interactions between H4M regulators and their over-
all effect on the TME and anti-tumor immunity need 
to be further elucidated. Identifying the practical role 
of H4M modification in the TME will contribute to a 
better understanding of the mechanism of HCC pro-
gression and help guide more effective immunotherapy 
strategies.

Based on 36 H4M regulators, three distinct H4M 
modification patterns were identified. H4Mcluster-A 
had numerous immune cell infiltrations in TME, which 
was characterized by an immune-inflamed phenotype. 
Patients in H4Mcluster-A may have a better immune 
checkpoint blocker response [45, 48]. H4Mcluster-B 
was characterized by a phenotype of immune suppres-
sion. Although patients split into H4Mcluster-B also had 
abundant immune cell infiltration, they could not induce 
normal anti-tumor immunity [6, 37, 45]. H4Mcluster-C 
was intermediate, and this modification pattern didn’t 
reveal specific immune infiltration characteristics. In 
addition, we constructed an H4M-related scoring system, 
which could effectively reflect H4M modification in an 
individual tumor sample.

Immune checkpoint blockade can elicit robust and 
long-lasting responses, showing promise as one of the 
principal therapeutic modalities in patients with vari-
ous cancers [49, 50], including HCC [51]. However, no 
biomarker has been validated accurately to guide clini-
cal decision-making [52]. The H4M scoring system was 
found to be significantly correlated with immune cell 
infiltration and immune checkpoint expression, indi-
cating a strong potential to predict immunotherapy 
response. Multiple reported indicators confirmed the 
pivotal role of H4Mscore in predicting the response to 
immunotherapy, including the immunophenoscore and 
TIDE score. The high H4Mscore was identified as a risk 
factor for immunotherapy in patients with HCC and 
was associated with a poorer immunotherapy response. 
In addition, external immunotherapy cohorts were used 
to validate this finding. In IMvigor210 and GSE91061 
cohorts, patients with a higher H4Mscore suggested a 
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worse prognosis and lower sensitivity to immunotherapy. 
Amazingly, H4Mscore was superior to PD-L1 in distin-
guishing patients who responded to immunotherapy. 
This demonstrates conclusively that the H4Mscore-
related system has significant clinical utility for predict-
ing immunotherapy response.

The TME, which is made up of tumor cells and stro-
mal cells, exhibits an immunosuppressive trait in HCC 
patients, which not only induces tumor progression but 
also poses a big challenge for an effective anti-tumor 
immune response [53]. Also, it has been demonstrated 
that the clinical response to immunotherapy is strongly 
correlated with the tumor immune microenvironment 
of HCC [52]. Three different H4M modification patterns 
could distinguish TME into different statuses. According 
to the expression landscape of H4M regulators, we could 
speculate on paired TME features, which is helpful in 
understanding the mechanism of HCC progression and 
predicting the immunotherapy response.

Many published works have highlighted the vital role 
of H4M in various cancers, and for instance, PHF8 
played an oncogene function and contributed to EMT 
and metastasis in HCC [54, 55]. KDM1A was found to 
facilitate immunosuppression by upregulating PD-L1 
expression and KDM1A-targeting therapy could reduce 
acquired resistance to sorafenib and improve HCC ther-
apeutic efficacy [56, 57]. Different from previous stud-
ies, we elucidated the landscape of H4M regulators via 
multi-omics analysis in HCC for the first time. Whether 
at the genome or transcriptome level, H4M regulators 
exhibited robust differences between HCC and normal 
samples.

Briefly, the cluster results of the H4M patterns and 
H4M geneClusters are comparable, indicating that our 
cluster method is reliable, elucidates the heterogeneity 
of tumors in-depth, and augments the existing classifica-
tion systems. The H4Mscore can comprehensively evalu-
ate the H4M modification pattern of specific patients and 
corresponding TME characteristics, further identifying 
tumor immunological traits and guiding more effec-
tive clinical decision-making. The H4Mscore can also 
be utilized as a reliable prognostic biomarker to predict 
survival and the effectiveness of immunotherapy. Eight 
external HCC cohorts and two classical immunotherapy 
cohorts confirmed our conclusion. Nevertheless, due to 
the lack of an HCC cohort treated with immunothera-
pies, more prospective trials are expected to validate 
these findings further. In summary, our findings pro-
vided novel ideas for improving the clinical responses of 
patients to immunotherapy, identifying different TME 
features, and promoting personalized cancer immuno-
therapy in future.

Conclusion
In conclusion, H4M modifications contributed to the 
complexity and diversity of TME. The H4Mscore could 
reflect the TME and immunological status of individual 
patients, which could accurately predict prognosis and 
facilitate clinical transformation in HCC.
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Additional file 1. Figure S1: Correlation analyses for H4M regulators 
expression and CNV and methylation levels. A The mutation co-
occurrence and exclusion analysis for histone methylation modification 
(H4M) regulators in the TCGA-LIHC cohort. Co-occurrence: aquamarine; 
exclusion: claybank. B The location of H4M modification genes on 23 
chromosomes in TCGA-LIHC. C Correlation between mRNA expression 
and CNV variation levels of H4M regulators. D Correlation between mRNA 
expression and methylation levels of H4M regulators. E The differences in 
methylation level of H4M regulators between tumor and normal samples. 
F Expression of 36 H4M regulators between four microenvironment 
subtypes. IE/F: immune-enriched and fibrotic; IE: immune-enriched but 
non-fibrotic; F: fibrotic; D: immune-depleted. *, **, and *** mean p < 0.05, 
< 0.01, and < 0.001, respectively.

Additional file 2. Figure S2：Immunohistochemistry of H4M regulators. 
A-H The protein levels of H4M regulators in normal liver and LIHC were 
visualized by immunohistochemistry in HPA.

Additional file 3. Figure S3: The expression landscape of H4M regulators 
in different subtypes and its correlation with different cancer markers. A 
Expression of 36 H4M regulators between six immune subtypes. B Expres-
sion of 36 H4M regulators between p53 wild and mutation groups. Three 
cancer signatures were involved, including homologous recombination 
deficiency (HRD), intratumor heterogeneity, and proliferation score. The 
correlation between these three cancer signatures and H4M writers was 
determined. C, H4M erasers D, and H4M readers E, respectively. *, **, and 
*** mean p < 0.05, < 0.01, and < 0.001, respectively.

Additional file 4. Figure S4: Prognostic analysis for H4M regulators and 
the importance of ORC1 and FANCD2 in overall H4M modification. A 
Expression of H4M regulators between ORC1 high expression group and 
low expression group. B Expression of H4M regulators between FANCD2 
high expression group and low expression group. C The forest plot of the 
HR for the correlation between H4M regulators and the prognosis of HCC 
patients. D Kaplan–Meier survival analyses for the high and low ORC1 
expression groups. E Kaplan–Meier survival analyses for the high and 
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low FANCD2 expression groups. F The difference in enriched hallmarks 
between H4Mcluster-A and H4Mcluster-C. *, **, and *** mean p < 0.05, < 
0.01, and < 0.001, respectively.

Additional file 5. Figure S5: Three H4M modification patterns were 
validated in the integrated external cohort. A The distribution of eight 
data sets before consolidation. B The distribution of eight data sets after 
removing the batch effects. C Consensus matrix heatmap defining three 
H4Mclusters (k = 3) and their correlation areas. D Kaplan–Meier survival 
analysis for H4Mclusters.

Additional file 6. Figure S6: Biological function differences among three 
distinct H4M modification patterns. A Difference in enriched hallmarks 
between H4Mcluster-A and H4Mcluster-B. B Difference in enriched 
hallmarks between H4Mcluster-B and H4Mcluster-C. C Differences in intra-
tumor heterogeneity score among three H4Mclusters. D Differences in 
HRD score among three H4Mclusters. E Differences in proliferation score 
among three H4Mclusters. F-G Two groups of typical cancer signatures 
differences among three H4Mclusters. *, **, and *** mean p < 0.05, < 0.01, 
and < 0.001, respectively.

Additional file 7. Figure S7: Immune infiltration evaluation and WGCNA 
analysis process. A-B Evaluating tumor-infiltrating immune cell abun-
dance differences among three H4Mclusters. C-E The detailed analysis 
process of identifying key modules by WGCNA analysis. F Scatterplots of 
correlation between MEturquoise membership and gene significance 
for H4Mcluster-C. G Expression of 36 H4M regulators among three H4M 
geneClusters. H-J Differences in intratumor heterogeneity score, HRD 
score, and proliferation score among three H4M geneClusters. *, **, and 
*** mean p < 0.05, < 0.01, and < 0.001, respectively.

Additional file 8. Figure S8: Validating the prognostic value of H4Mscore 
in the internal and external cohorts. A-C Kaplan–Meier survival analyses 
for the high and low H4Mscore groups in three internal cohorts, including 
TCGA, ICGC-LIRI, and ICGA-LICA, respectively. D-H Kaplan–Meier survival 
analyses for the high and low H4Mscore groups in five external cohorts, 
including NODE-OEZ005255, GPL3921-GSE14520, GSE76427, GSE116174, 
and GPL571-GSE14520, respectively.

Additional file 9. Figure S9: Validating the prognostic value of H4Mscore 
in different clinical subtypes. A-B Difference in H4Mscore among three 
H4Mclusters and three H4M geneClusters, respectively. C-L Kaplan–Meier 
survival analyses for the high and low H4Mscore groups in different 
subtypes, including age, gender, histologic grade, TNM stage, and vascular 
invasion, respectively.

Additional file 10. Figure S10: Selection of hub genes for further experi-
ments and validation. A The protein–protein interaction network. B The 
hub genes are selected by 12 cytoHubba algorithms in the Cytoscape 
software. C Expression of seven core genes between normal and HCC 
samples. D-J The Kaplan–Meier survival analyses for seven filtered hub 
genes. *, **, and *** mean p < 0.05, < 0.01, and < 0.001, respectively.

Additional file 11. Figure S11: Expression of seven core genes in clinical 
hepatocellular carcinoma (HCC) samples and paired paracancerous 
samples. A-G mRNA expression of seven core genes in HCC samples (T) 
and paracancerous samples (P). *, **, and *** mean p < 0.05, < 0.01, and < 
0.001, respectively.

Additional file 12. Figure S12: Effects of hub genes on the proliferation 
and migration of HCC cells. After being treated with siRNAs, the mRNA 
expression and optical density curves of CCNB2 (A), CDCA8 (B), CENPF 
(C), EXO1 (D), TOP2A (E), TPX2 (F), and TTK (G) in Huh‐7 cells. H-I Migration 
experiment of Huh‐7 cells treated with siRNA for 48 hours. Cells were 
stained with crystal violet. Scale bar, 100 μM. *, **, and *** mean p < 0.05, 
< 0.01, and < 0.001, compared with negative control (NC) group.

Additional file 13. Figure S13: Correlation between H4Mscore and cancer 
signatures. By employing the Spearman method, correlation analyses 
between H4Mscore and HRD score (A), intratumor heterogeneity score 
(B), and proliferation score (C) were performed. (D-E) Two groups of typi-
cal cancer signatures differences between the high H4Mscore and low 
H4Mscore groups. (F) Correlation analyses between H4Mscore and mRNA 
stemness index (mRNAsi) using Spearman method. (G) Survival analyses 

for HCC patients stratified by both H4Mscore and mRNAsi using Kaplan–
Meier curves. (H) The waterfall plot of tumor somatic mutation established 
by those with high H4Mscore and low H4Mscore. *, **, and *** mean p < 
0.05, < 0.01, and < 0.001, respectively.

Additional file 14. Table S1. Basic information of hepatocellular carcinoma 
(HCC) datasets and external immunotherapy datasets included in this 
study. Table S2. Source and function of 36 histone H4 methylation (H4M) 
related regulators. Table S3. Primer sequences for qPCR. Table S4. The 
siRNA duplex sequences for functional experiments. Table S5. Microenvi-
ronment subtypes of HCC patients in TCGA. Table S6. Immune subtypes 
of HCC patients in TCGA. Table S7. TP53 mutation status of HCC patients 
in TCGA. Table S8. Intratumor heterogeneity score, proliferation score 
and Homologous Recombination Defects (HRD) score of HCC patients 
in TCGA-LIHC cohort. Table S9. UniCox regression and KM analyses for 
36 H4M regulators. Table S10. Correlation analysis for 36 H4M regulators 
in meta-cohort. Table S11. Samples clustering in HCC RNA-seq meta 
cohorts. Table S12. Samples clustering in integrated external HCC cohorts. 
Table S13. Enrichment score of hallmark gene sets in HCC RNA-seq meta 
cohorts by GSVA analysis. Table S14. Enrichment score of HCC RNA-seq 
meta cohorts in cancer-related signatures. Table S15. Enrichment score of 
HCC RNA-seq meta cohorts in immune cell infiltration or immune signa-
tures. Table S16. UniCox regression analysis for 133 hub genes. Table S17. 
The mRNA stemness index (mRNAsi) of HCC RNA-seq meta cohorts. 
Table S18. Immune response prediction by TIDE database. Table S19. 
Immunophenotype score predicted by TCIA database.
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