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Abstract 

Background  Systemic sclerosis (SSc) is a multisystem autoimmune disorder that has an unclear etiology and dispro-
portionately affects women and African Americans. Despite this, African Americans are dramatically underrepresented 
in SSc research. Additionally, monocytes show heightened activation in SSc and in African Americans relative to Euro-
pean Americans. In this study, we sought to investigate DNA methylation and gene expression patterns in classical 
monocytes in a health disparity population.

Methods  Classical monocytes (CD14+ + CD16−) were FACS-isolated from 34 self-reported African American 
women. Samples from 12 SSc patients and 12 healthy controls were hybridized on MethylationEPIC BeadChip array, 
while RNA-seq was performed on 16 SSc patients and 18 healthy controls. Analyses were computed to identify dif-
ferentially methylated CpGs (DMCs), differentially expressed genes (DEGs), and CpGs associated with changes in gene 
expression (eQTM analysis).

Results  We observed modest DNA methylation and gene expression differences between cases and controls. The 
genes harboring the top DMCs, the top DEGs, as well as the top eQTM loci were enriched for metabolic processes. 
Genes involved in immune processes and pathways showed a weak upregulation in the transcriptomic analysis. 
While many genes were newly identified, several other have been previously reported as differentially methylated or 
expressed in different blood cells from patients with SSc, supporting for their potential dysregulation in SSc.

Conclusions  While contrasting with results found in other blood cell types in largely European-descent groups, the 
results of this study support that variation in DNA methylation and gene expression exists among different cell types 
and individuals of different genetic, clinical, social, and environmental backgrounds. This finding supports the impor-
tance of including diverse, well-characterized patients to understand the different roles of DNA methylation and gene 
expression variability in the dysregulation of classical monocytes in diverse populations, which might help explaining 
the health disparities.
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Background
Systemic sclerosis (SSc or scleroderma) is a rare, multi-
system, connective tissue disease characterized by cuta-
neous and visceral fibrosis, immune dysregulation, and 
vasculopathy. SSc is very heterogeneous, with patients 
being commonly classified into three subsets based on 
the pattern of skin involvement: sine scleroderma, limited 
cutaneous SSc (lcSSc), or diffuse cutaneous SSc (dcSSc), 
the latter having the worse prognosis [1]. SSc is also 
marked by pronounced gender and ethnic disparities. 
Similar to other autoimmune diseases, women are four to 
nine times more likely to have SSc than men [2]. Relative 
to individuals of European descent, African Americans 
are more likely to develop SSc [3], have earlier onset of 
disease, increased disease severity, increased morbidity, 
earlier mortality, and reduced survival [3–12]. The eti-
ology of SSc and the factors underlying these disparities 
remain elusive, and African American individuals con-
tinue to be underrepresented in research [13].

While having a family history of SSc is a risk factor for 
developing the disease [14], the low concordance rate of 
disease between monozygotic twins suggests that epige-
netic and/or environmental factors may play a substan-
tial role in SSc pathogenesis [15–17]. Indeed, genetic 
and epigenetic studies conducted mostly in individuals 
of European descent have uncovered multiple loci asso-
ciated with SSc [18, 19]. Variation in DNA methylation 
across ancestral populations is contributed to by genetic 
ancestry and environmental factors [20]. Despite the 
increased disease burden in African Americans and vari-
ation in DNA methylation across populations, only two 
genome-wide differential DNA methylation analyses 
have been conducted in peripheral blood and skin fibro-
blasts from SSc patients of African descent [21, 22].

The dysregulation of monocytes in patients with SSc is 
well established as evidenced by their increased numbers 
in both peripheral blood and in skin of SSc patients [23–
26] and is associated with reduced survival in SSc [26]. 
African Americans exhibit stronger inflammatory signa-
tures [27–33], including heightened monocyte activation 
[29, 30]. As recently reviewed, monocytes are associated 
with altered epigenetic marks in SSc [19]. Notably, his-
tone demethylation and chromatin dysregulation under-
lie monocyte dysregulation in patients with SSc [15, 34] 
and contribute to the trans-differentiation of fibroblasts, 
a key step in the pathogenesis of SSc [35, 36]. Recently, 
the first transcriptomic analysis of monocytes in patients 
with SSc revealed great variability of expression patterns 
across SSc patients that correlated with disease activ-
ity outcome measures [37]. The role of DNA methyla-
tion and its relationship with gene expression patterns in 
SSc monocytes has not been previously investigated and 
studies in health disparity populations are lacking.

Given the dysregulation of monocytes in SSc and the 
increased prevalence and severity of disease in African 
Americans, it is important to identify the mechanisms 
underlying this dysregulation and their potential contri-
bution to the ethnic disparity. In this study, we undertook 
a systems-level approach, integrating DNA methyla-
tion and transcriptional data, to assess the relationship 
between DNA methylation and gene expression in classi-
cal monocytes from African American patients with SSc.

Results
Subject characteristics
Given the sex and ethnic disparities in SSc, this study 
focused on African American women, a health disparity 
population for SSc. All participants were self-reported 
African American female, and all patients met the 2013 
ACR/EULAR classification criteria for SSc [38], most 
presenting with diffuse cutaneous SSc (dcSSc), intersti-
tial lung disease (ILD), and being on current immuno-
suppressive therapies. No participants reported current 
infections or malignancy at the time of study visit. Addi-
tional clinical and demographic characteristics of the SSc 
patients and healthy controls are summarized in Table 1 
and Additional File 1: Table  S1, which shows the indi-
vidual characteristics of the study participants. Classi-
cal monocytes (CD14++CD16-) were isolated from the 
study participants using fluorescence activated cell sort-
ing (FACS).

Differentially methylated sites and genes are enriched 
for metabolic processes
To gain insights into functional and molecular alterations 
of monocytes in African American patients with SSc, 
over 850,000 CpG sites were tested for differential meth-
ylation between self-reported African American female 
patients with SSc and controls.

The differences in methylation levels between patients 
and controls were modest. A total of 19 differentially 
methylated CpGs (DMCs), which corresponds to 0.002% 
of all cytosines tested, meet an FDR-adjusted p value < 0.4 
(Table 2). The rationale for the FDR setting was guided by 
the desire to perform a system-level analysis and include 
as many CpGs sites as possible, as well as previous stud-
ies demonstrating that this threshold permits a sensitive 
analysis at a system level of genes that are relevant to the 
underlying biology of the trait [39, 40]. A P–P plot of CpG 
association testing results supports that using − log(p) > 4 
is a reasonable empirical threshold of significance (Addi-
tional file 1: Fig. S1) for systems-level analyses.

In addition to CpGs near several pseudogenes, top 
differentially methylated CpGs included those near 
the genes that encode the centrosomal protein ninein 
(NIN, aka Glycogen Synthase Kinase 3 Beta-Interacting 
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Table 1  Demographic and clinical characteristics of the study participants

Immunosuppressive medications include oral steroids, mycophenolate mofetil, or hydroxychloroquine; antihypertensive medications include diuretics, calcium 
channel blockers, alpha blockers, beta blockers, ACE inhibitors, or angiotensin receptor antagonists

SSc systemic sclerosis, dcSSc diffuse cutaneous SSc, ssSSc sine SSc, mRSS modified Rodnan skin score, ILD interstitial lung disease, PH/PAH pulmonary hypertension/
pulmonary arterial hypertension, MCTD mixed connective tissue disease, SLE systemic lupus erythematosus
a Assessed for 4 patients with dcSSc within 3–18 months of enrolment
b Disclosed for all participants except one control in the Gene Expression group

DNA methylation Gene expression

Patients (n = 12) Controls (n = 12) Patients (n = 16) Controls (n = 18)

Age at enrollment (mean ± SD) 52.17 ± 12.1 48.58 ± 15.6 51.75 ± 12.3 49.28 ± 13.9

Female, n (%) 12 (100%) 12 (100%) 16 (100%) 18 (100%)

dcSSc, n (%) 6 (50%) NA 10 (62.5%) NA

lcSSc, n (%) 5 (41.7%) NA 4 (25%) NA

ssSSc, n (%) 1 (8.3%) NA 1 (6.25%) NA

Raynaud’s Phenomenon, n (%) 12 (100%) NA 16 (100%) NA

Disease duration (mean ± SD) 11.08 ± 6.27 NA 8.88 ± 7.78 NA

mRSS (mean ± SD)a 13 ± 6.18 NA 13 ± 6.18 NA

ILD, n (%) 8 (66.7%) NA 10 (62.5%) NA

PH/PAH, n (%) 5 (41.7%) NA 5 (31.3%) NA

Overlap MCTD, n (%) 0 (0%) NA 1 (6.25%) NA

Overlap SLE, n (%) 0 (0%) NA 1 (6.25%) NA

Immunosuppressive medications, n (%) 8 (66.7%) NA 12 (75%) NA

Antihypertensive medications, n (%) 9 (75%) NA 13 (81%) NA

Smoker at enrollment, n (%)b 2 (16.7%) 0 (0%) 2 (12.5%) 2 (11.1%)

Table 2  Top differentially methylated CpGs between female African American patients with SSc and controls ranked by absolute 
effect size

CpGs are shown, along with nearest gene, annotation, averaged methylation levels (β), methylation difference, unadjusted and adjusted p values

CpG Gene Chr Position (kb) Relation to Island Control β SSc β Difference p value Adjusted 
p value

cg22805491 NIN 14 51,172 OpenSea 0.44 0.53 0.09 2.99E−08 0.02

cg24073653 SLC41A2 12 105,221 OpenSea 0.61 0.69 0.08 2.92E−06 0.2

cg19933320 ZNF107 7 64,125 N_Shore 0.33 0.4 0.08 8.20E−06 0.35

cg06548512 LOC728989 1 146,522 Island 0.63 0.7 0.07 1.32E−07 0.05

cg00832928 SELENOT 3 150,329 Island 0.61 0.68 0.07 4.58E−07 0.11

cg08653580 CD5 11 60,862 OpenSea 0.66 0.73 0.07 1.21E−06 0.16

cg12601237 ST8SIA6 10 17,429 OpenSea 0.71 0.78 0.07 3.69E−06 0.21

cg14115740 FANCC 9 98,055 Island 0.57 0.64 0.07 4.74E−06 0.24

cg22167498 RAB11B-AS1 19 8451 N_Shelf 0.57 0.62 0.06 1.00E−06 0.16

cg23596249 MARCHF1 4 165,110 Island 0.51 0.57 0.06 1.85E−06 0.19

cg13704629 DCAF4 14 73,396 S_Shelf 0.56 0.62 0.06 2.73E−06 0.2

cg11652329 P2RX6P 22 21,399 N_Shore 0.61 0.67 0.05 4.74E−06 0.24

cg26715639 S100A11 1 151,986 OpenSea 0.6 0.65 0.05 6.43E−06 0.31

cg23493751 CCR3 3 46,205 OpenSea 0.75 0.8 0.05 7.64E−06 0.34

cg08288426 ZSCAN29 15 43,651 OpenSea 0.8 0.76 − 0.04 1.51E−06 0.17

cg18507060 OAS3 12 113,399 OpenSea 0.77 0.81 0.04 5.48E−07 0.11

cg10044900 CFAP44 3 113,058 OpenSea 0.76 0.8 0.04 2.55E−06 0.2

cg14929421 ACTR3BP2 2 92,318 OpenSea 0.52 0.55 0.03 2.80E−06 0.2

cg04331667 CCDC71L 7 106,171 OpenSea 0.8 0.83 0.03 3.21E−06 0.2
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Protein), the selenoprotein T (SELENOT), the synthetase 
OAS3, or the melanoprotein T-Cell Surface Glycoprotein 
CD5 (Table 2; Additional file 1: Figs. S2 and S3).

We sought to investigate any potential enrichment (or 
conversely, underrepresentation) of DMCs in defined 
genomic regions (Fig.  1). Among the top 100 DMCs, 
there was an overrepresentation of DMCs in exon 
boundaries (OR = 4.9, p < 0.0001), while there was a 

depletion of DMCs in the vicinity of transcription start 
sites (OR = 0.2, p < 0.005).

To better understand the chromatin context and 
functional role underlying the disease-associated CpG 
sites, we performed integrative epigenomics analyses 
using the eFORGE 2.0 framework [41–43] to assess 
whether these SSc-associated CpGs reside within regu-
latory regions across the genome in diverse tissues and 
cell types. Using the top 100 DMCs associated with SSc 
showed an enrichment of H3K9me3 (a histone mark 
associated with heterochromatin regions, important for 
repressing repetitive elements, non-coding portions of 
the genome, and silencing lineage-inappropriate genes) 
in several fetal cells (blue in Fig. 2), and an enrichment 
of H3K36me3 (a transcription-associated histone mark 
important in maintaining gene expression stability and 
regulation of DNA damage repair) in several blood, 
stem and fetal cells (pink in Fig. 2). Overall, these find-
ings suggest that most epigenetic changes are present 
in non-transcribed regions.

We first used the DAVID Functional Annotation 
Tool 6.8 [44, 45] to uncover the biological significance 
of the genes in the regions of the differentially meth-
ylated cytosines shown in Table  2. Although not sig-
nificant, the top Gene Ontology (GO) terms were 
related to Metabolic Processes (GO:0008152; p = 0.4), 
driven by OAS3, DCAF4, FANCC, S100A11, ST8SIA6, 
RNF24, SELENOT, ZSCAN29, and ZNF107. Close to 
half of the genes harboring DMC are phosphoproteins: 

Fig. 1  Genomic location of the top 100 differentially methylated 
CpGs (DMC). Odds ratio (OR), 95% confidence intervals (CI), and 
p values were computed against the general distribution of the 
CpGs using GraphPad Prism v9. Error bars represent the 95% CI. 
OR indicates the enrichment or depletion of DMCs in each region. 
*p < 0.05; **p < 0.005; ****p < 0.0001. TSS: transcription start site. 
TSS200: 0–200 bases upstream of the transcriptional start site (TSS). 
TSS1500: 200–1500 bases upstream of the TSS

Fig. 2  Enrichment of differentially methylated CpGs in H3K9me3 and H3K36me3 histone marks among various cell and tissue types using 
Roadmap Epigenomics project data. Statistically significant enrichment outside the 99.9th percentile (− log10 binomial p value ≥ 3.38) is colored 
red on the vertical axis
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OAS3, CCR3, S100A11, CFAP44, CCDC71L, SLC41A2, 
ZSCAN29, CD5, NIN.

Next, we used Enrichr [46, 47] to explore the Biologi-
cal Processes and KEGG pathways associated with the 
genes harboring the top DMCs in Table 2. As shown in 
Fig. 3, the top Biological Processes were related to meta-
bolic processes, including those of RNA (GO:0060700, 
p = 4.9E−03 (driven by the ribonuclease OAS3)) and 
protein (GO:0032069, p = 5.9E−03 (driven by the sele-
nocysteine SELENOT)) metabolic processes, as well as 
hormone secretion (GO:0060124, p = 5.9E−03 (driven by 
OAS3 and SELENOT)). No pathways showed significant 
enrichment.

Differentially expressed genes are enriched for metabolic 
processes
Differential gene expression analysis revealed a total of 
1272 transcripts differentially expressed between Afri-
can American female patients with SSc and controls at 
an FDR-corrected p < 0.4 (Additional file 1: Fig. S4). These 
differentially expressed transcripts correspond to 5.0% of 
all 25,369 transcripts tested. The rationale for the FDR 
setting was the same as described above for the DNA 
methylation analysis. The top differentially expressed 
transcripts are shown in Table 3.

The top differentially expressed genes (DEGs) include 
the collagen COL9A2, the endoplasmic reticulum trans-
membrane channel-like TMC8 gene, the heparinase 
HPSE, the proto-oncogene nuclear ubiquitin ligase 
MDM2, the vesicular trafficking cytohesin CYTH4, the 

phospholipase PLD1, and the Kruppel-like transcription 
factor KLF6 (Table 3).

Gene Ontology analysis of the top transcripts (Table 3) 
using DAVID 6.8 showed many genes that participate in 
metabolic processes (GO:004423; p = 2.70E−02 (KLF6, 
MDM2, SMARCA4, ABHD5, GDAP1, HPSE, HIVEP3, 
INSIG2, IVD, KYNU, OBSCN, PLD1, POT1, PPP1R14B, 
RNF146, SLC35B3, ZNF654)), especially catabolic pro-
cesses (GO:0044248; p = 2.0E−02 (MDM2, ABHD5, 
HPSE, IVD, KYNU, PLD1, RNF146), and sulfur com-
pound metabolic process (GO:0006790; p = 8.0E−03 
(GDAP1, HPSE, KYNU, SLC34B3)).

Enrichr analysis of the top differentially expressed 
genes in Table  3 revealed an enrichment of several bio-
logical processes related to metabolic processes (e.g., 
GO:0006654, p = 1.0E−03), as well as an enrichment of 
the KEGG endocytosis pathway (p = 1.9E−03) (Fig.  4A 
and B). Relaxing the threshold and including the 450 
transcripts with FDR-corrected p < 0.3 in the comparison 
between cases and controls revealed an involvement of 
immune biological processes and pathways (Fig. 4C, D).

Expression quantitative trait methylation (eQTM) analysis
To investigate the potential mechanistic relationship 
between DNA methylation and gene expression variation 
in classical monocytes, we leveraged RNA-sequencing 
data from the same individuals and computed an expres-
sion quantitative trait methylation (eQTM) analysis to 
identify CpGs associated with changes in gene expres-
sion. Table  4 shows the top eQTM loci, which include 
the transcriptional repressor homolog PCGF1, the 

Fig. 3  Metabolic process enrichment among the genes harboring the top DMCs. The x-axis shows the − log10(p value) of the Biological Process 
enrichment obtained from Enrichr. The length of the bar represents the significance of that specific term
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RNA helicase DDX27, and the splicing factor SF3B2. 
About half the eQTM loci showed a negative correla-
tion between DNA methylation and gene expression lev-
els, while the other half displayed a positive correlation 
(Table 4).

These 25 genes whose expression is associated with 
DMCs are enriched for cellular metabolic processes 
according to DAVID (GO:0044237, p = 6.50E−03 (driven 
by BCR, DDX27, DDX41, E2F4, MLLT6, PBX2, RAB11B, 
U2AF2, CHD1, DCTPP1, ITPKB, KYNU, MMP9, 
PCGF1, RNF123, SF3B2, TDP2, UBR3)). In addition to 
microtubule cytoskeleton organization processes, other 
metabolic processes like RNA splicing and processing 
were also unveiled by Enrichr (Fig.  5). The top KEGG 
Pathway was vasopressin-regulated water reabsorption 
(Fig. 5).

Discussion
This study is to our knowledge the first to evaluate and 
integrate analysis of DNA methylation and gene expres-
sion in classical monocytes from African American 
patients with SSc on a genome-wide scale. We show 
modest differences in DNA methylation and gene expres-
sion between patients and controls, and an enrichment of 
genes involved in metabolic processes.

The differential methylation analysis showed that the 
top DMCs were enriched for H3K9me3 and H3K36me3, 
markers associated with heterochromatic regions in 
several fetal tissues. This is consistent with the recent 
finding that several tissue-specific repressed genomic 
regions are enriched for disease-associated GWAS vari-
ants, and suggests that DMC may also have tissue-spe-
cific effects in repressive regions [43]. Previous analyses 
of DNA methylation in other blood cell types and in 
largely European-descent groups [21, 48–53] report a 
larger difference in DNA methylation patterns between 
cases and controls, and an enrichment of genes involved 
in immune and inflammatory processes. In our study, 
only OAS3 and CD5 have been previously reported as 
differentially methylated in CD4 + T cells from Spanish 
patients with SSc [53]. OAS3 is an interferon-induced, 
dsRNA-activated antiviral enzyme which plays a role 
in cellular innate antiviral response and the immune 
response to the interferon pathway [54, 55]. Its expres-
sion can be increased in SSc patients [56]. CD5 is a type-I 
transmembrane glycoprotein found on the surface of thy-
mocytes, T lymphocytes, and a subset of B lymphocytes. 
CD5 is upregulated in B cells from patients with SSc [57]. 
Among other genes harboring top DMCs, the centroso-
mal protein NIN has a role in promoting angiogenesis 

Table 3  Top 20 differentially expressed transcripts between female African American patients with SSc and controls ranked by 
absolute effect size

Genes are shown, along with location, strand, logarithm fold change (logFC), logarithm of counts per million reads (logCPM), unadjusted and adjusted p values

Gene Chr Start (kb) End (kb) Strand logFC logCPM p Value Adjusted 
p value

COL9A2 1 40,766 40,883 − − 1.18 3.04 1.26E−04 0.25

OBSCN 1 228,296 228,495  +  − 1.13 2.13 5.01E−04 0.25

PPP1R14B 11 64,012 64,114 − − 0.65 2.53 2.17E−04 0.25

GDAP1 8 75,163 75,279  +  0.57 4.1 3.66E−04 0.25

TMC8 17 76,027 76,139  +  − 0.54 6.38 5.50E−05 0.25

ZNF654 3 88,088 88,194  +  0.43 4.19 2.37E−04 0.25

KYNU 2 143,535 143,735  +  0.43 7.52 3.25E−04 0.25

KLF6 10 3818 3927 − 0.42 9.52 1.94E−04 0.25

INSIG2 2 118,746 118,868  +  0.41 3.65 2.79E−04 0.25

SLC35B3 6 8,413 8,536 − 0.41 4.39 3.10E−04 0.25

POT1 7 124,470 124,670 − 0.41 4.64 4.27E−04 0.25

HIVEP3 1 42,284 42,484 − − 0.4 5.13 2.65E−04 0.25

HPSE 4 84,216 84,356 − 0.4 6.6 6.95E−05 0.25

MDM2 12 69,102 69,239  +  0.37 7.08 1.42E−04 0.25

ABHD5 3 43,632 43,764  +  0.36 5.8 4.49E−04 0.25

RNF146 6 127,488 127,610  +  0.36 5.85 4.66E−04 0.25

IVD 15 40,598 40,714  +  − 0.34 5.67 2.20E−04 0.25

SMARCA4 19 10,972 11,172  +  − 0.31 7.93 2.97E−04 0.25

PLD1 3 171,428 171,628 − 0.27 5.99 1.78E−04 0.25

CYTH4 22 37,578 37,711  +  − 0.26 7.88 1.71E−04 0.25
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[58], which is dysregulated in SSc. Antibodies against 
NIN are present in sera from several patients with SSc 
and other autoimmune disorders [59], which further sup-
ports a role for NIN in SSc. Interestingly, NIN may also 
be regulated by GSK-3β, a key regulator of the canoni-
cal Wnt signaling in fibroblasts whose inhibition results 
in fibroblast activation and increased release of collagen 
[60].

Multiple analyses of gene expression patterns in differ-
ent blood cell types from mostly European-derived popu-
lations consistently report a prominent upregulation of 
genes involved in immune and inflammatory processes in 
SSc patients [37, 61–74]. This includes the only analysis 
of classical monocytes to date [37] and contrasts with the 
weaker upregulation of inflammatory and immune genes 
we observed in classical monocytes from African Ameri-
can SSc patients. Multiple DEGs found in our analysis 
have been previously reported as differentially expressed 
in different blood cells from patients with SSc, including 
the endoplasmic reticulum transmembrane channel-like 
TMC8 [53], the collagen COL9A2 [66], the Kruppel-like 
transcription factor KLF6 [37, 53, 61], the zinc finger 
ZNF654 [53], the insulin-Induced INSIG2 [53], the tran-
scription regulator SMARCA4 [53], the kynureninase 

KYNU [37, 62, 63, 68], the telomere regulator POT1 
[53], and the hydrolase ABHD5 [63, 68]. However, when 
we focus on classical monocytes, our results are consist-
ent in significance and directionality of effect to those 
reported by Makinde and colleagues for HPSE, CYTH4, 
KLF6, KYNU, C6orf62, and TUBB4B [37], providing sup-
port for their potential dysregulation in SSc.

The variable correlation between methylation patterns 
and gene expression is well established, being either posi-
tive or negative, and being tissue and context specific, 
in that the local DNA sequence and genomic features 
largely account for local patterns of methylation [33, 75–
81]. In our eQTM analysis, we found that about half of 
the DMCs have a positive and half a negative correlation 
with gene expression levels. Several of the genes whose 
expression was associated with eQTM have been previ-
ously reported as differentially expressed in different 
blood cells from patients with SSc, lending further sup-
port for their dysregulation in SSc patients. These include 
DDX27 [53], C6orf62 [53], CHD1 [65], BCR [53], TDP2 
[53], MLLT6 [53], RAB11B [53], CLIP4 [53], PBX2 [53], 
MMP9 [70], and KYNU [37, 62, 63, 68].

Our results provide support for the involvement of 
dysregulated metabolic processes in SSc, consistent with 

Fig. 4  Metabolic and immune process and pathway enrichment among differentially expressed genes. Biological processes (a) and KEGG pathways 
(b) enriched for the top 20 DEG; biological processes (c) and KEGG pathways (d) enriched for the top 450 DEG. The x-axis shows the − log10(p value) 
of enrichment obtained from Enrichr. The length of the bar represents the significance of that specific term
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previous studies, reporting that dysregulated metabo-
lism is associated with SSc [82]. Different metabolic per-
turbations are expressed in different patients, reflecting 
the clinical heterogeneity of SSc [82]. Our enrichment 
of genes involved in metabolic processes contrasts with 
the prominent enrichment of genes involved in immune 
and inflammatory processes consistently reported in 

both DNA methylation [21, 48–53] and gene expression 
analyses in multiple blood cell populations and in largely 
European-descent groups [37, 61–74]. This is not surpris-
ing, given that previous studies have focused on blood 
(a heterogeneous tissue) or lymphoid cell populations, 
while our focus was on a myeloid cell population. The 
distinct racial category of the participants might appear 

Table 4  Top 25 eQTM loci

CpG Gene CpG CpG Chr Position (kb) Transcript Gene Coefficient p value

CCDC142 cg00402980 2 74,701 PCGF1 191.93 0.001

CSE1L cg06719602 20 47,696 DDX27 − 111.63 0.001

CFL1 cg03252697 11 65,623 SF3B2 − 682.91 0.005

CCDC142 cg00402980 2 74,701 DCTN1 − 892.47 0.011

KIAA0895L cg10031648 16 67,211 E2F4 − 126.96 0.028

KIAA0319 cg11457367 6 24,646 C6orf62 849.33 0.036

LOC100289230 cg16525244 5 98,273 CHD1 656.51 0.062

IP6K1 cg27076861 3 49,762 RNF123 − 270.99 0.068

KLHDC10 cg02630604 7 129,782 KLHDC10 203.05 0.093

BCR cg23436282 22 23,665 BCR − 153.94 0.106

KIAA0319 cg11457367 6 24,646 TDP2 193.28 0.111

PCGF2 cg18826743 17 36,901 MLLT6 − 205.72 0.114

B4GALT7 cg05174883 5 177,038 DDX41 126.69 0.122

RAB11B-AS1 cg22167498 19 8,451 RAB11B − 45.50 0.135

ITPK1 cg21166544 14 93,604 BTBD7 54.13 0.166

ZNF628 cg12450907 19 55,993 U2AF2 − 61.93 0.200

PCARE cg20836546 2 29,298 CLIP4 299.96 0.209

ACADSB cg07971827 10 124,772 FAM24B − 4.48 0.241

GIMAP7 cg01444712 7 150,211 GIMAP2 200.96 0.248

ITPKB cg22444124 1 226,868 ITPKB − 122.24 0.277

NOTCH4 cg26950898 6 32,164 PBX2 − 275.47 0.387

CD40 cg06282353 20 44,738 MMP9 513.29 0.412

METTL5 cg02173085 2 170,678 UBR3 123.62 0.419

KYNU cg11805548 2 143,634 KYNU 209.42 0.422

ZNF768 cg01174674 16 30,543 DCTPP1 9.04 0.430

Fig. 5  Biological processes (a) and KEGG pathways (b) enrichment among genes associated with eQTM loci. The x-axis shows the − log10(p 
value) of enrichment obtained from Enrichr. The length of the bar represents the significance of that specific term. Terms displayed in gray are not 
significant
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as another explanation for this difference. However, we 
caution against a simplistic explanation solely based on 
self-reported race. Race is an imperfect proxy for social 
determinants of health such as racism and discrimina-
tion, economic stability, healthcare access and quality, 
education access, and environmental exposures. These 
social and environmental determinants are differentially 
experienced across groups and geography, resulting in 
health disparities. We postulate that these sociocultural 
factors experienced by our study participants are one of 
the reasons underlying our results. The other reason that 
can explain the lack of replication across populations is 
genetic ancestry. Differences in DNA methylation are 
known to exist between individuals of African and Euro-
pean ancestry [20, 27, 33, 83–87], due to both variation 
in genetic ancestry and environmental factors [20]. These 
differences help explain the new findings and minimal 
overlap with previous reports.

Several other reasons and important limitations of this 
study might underlie the modest differences in DNA 
methylation and gene expression we observed in our 
study focused on classical monocytes from self-reported 
Black women. First, although this study is the first to 
evaluate DNA methylation and gene expression patterns 
in monocytes of African Americans, the sample size is 
very small. This study has virtually no power to detect 
the DNA methylation differences herein reported, but is 
powered to detect a reasonable fraction of the differen-
tially expressed transcripts between cases and controls. 
Nevertheless, with 16 total SSc cases, it is comparable to 
sample sizes from previous studies that assessed genome-
wide DNA methylation and gene expression primarily in 
European Americans [15, 37, 88, 89]. Also, our results are 
consistent with the heightened monocyte activation pre-
viously reported in African American patients with SSc 
[29, 30].

Second, we do not have DNA available on these study 
participants to allow us to estimate their genetic ances-
tries, and this study relies on self-reported race. Although 
we observed no evidence of population structure and 
adjusted for population stratification, to mitigate against 
the limitations of this study it is essential that future 
studies genotype and including multiple African groups 
to fully capture African genetic diversity.

Third, SSc is a rare disease with a prevalence of only 
49,000 US adults [90], and there is currently no existing 
cohort or repository of samples from African Ameri-
can patients that can be leveraged to enable large-scale 
studies, to replicate, and to validate our results. Given 
our small sample size, we tried to balance our desire to 
increase discovery at the cost of additional loci being 
false positive results, which is a reasonable premise to 
pursue systems-level analyses.

Fourth, most of the patients in our study presented 
with more severe SSc and were on current immunosup-
pressive therapies that can impact their epigenetic and 
transcriptional patterns. Although the modest sample 
size of this study precludes a robust statistical adjust-
ment for immunosuppressive drug use, and these medi-
cations affect the methylation levels of several CpGs, we 
also show that their use does not cause a substantial bias 
in our study (Additional file 1: Figs. S6 and S7). Interest-
ingly, in their transcriptional analysis of classical mono-
cytes in SSc patients, Makinde et al. [37], which included 
participants of different self-reported racial groups, note 
the substantial variability in the transcriptional profiles 
of the patients, with several patients, especially those 
on current immunosuppressive therapies, more closely 
resembling controls. This observation is consistent with 
our results where African American patients, who tend 
to have more severe disease and be on immunosuppres-
sants, show modest differences in gene expression rela-
tive to controls.

Fifth, and inherent to all epigenomic studies, we cannot 
exclude the possibility of reverse causation, or whether 
the DNA methylation and gene expression changes are 
a cause or an effect of SSc. Future longitudinal stud-
ies will help to elucidate the role of DNA methylation 
in disease etiology. Sixth, it is possible that the DNA 
methylation changes are due to genetic variation, but we 
lack genotypic data on these samples. Seventh, SSc is a 
very heterogeneous disorder, which can also explain the 
inconsistent and sometimes disparate results observed 
in different studies, including the lack of association 
between gene expression signatures and clinical charac-
teristics [91, 92]. Similarly, African Americans are a het-
erogeneous category of individuals with diverse cultural 
and genetic backgrounds [93].

Finally, we recognize that it is difficult to account for all 
lifestyle factors that could affect DNA methylation [17]. 
Unless studies account for all the genetic, clinical, demo-
graphic, behavioral, social, and environmental character-
istics of their participants, limited reproducibility is not 
unexpected. Future studies including diverse individuals 
with measures of genetic ancestry as well as environmen-
tal and social determinants of health responsible for the 
health disparities will ensure the validity and relevance 
of these findings for patients of all backgrounds. Despite 
these limitations, the findings in this study further sup-
port the need to continue to investigate the regulatory 
architecture of different cell types in diverse SSc patients.

Conclusions
Our study suggests that classical monocytes from Afri-
can American female patients with SSc display mod-
est changes in DNA methylation and gene expression 
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relative to healthy controls. The genes associated with the 
DMCs, DEGs, as well as eQTM loci, show an enrichment 
of metabolic processes, and only a weak upregulation of 
immune processes and pathways. These differences rela-
tive to previous reports of differential methylation and 
gene expression in patients with SSc epitomize the clini-
cal, biological, social, and environmental heterogeneity 
of SSc patients. This study underscores the importance 
of research in patients with diverse clinical and sociode-
mographic characteristics, and of integrating genetic and 
social factors, to enable a thorough understanding of the 
different roles of DNA methylation and gene expression 
variability in the dysregulation of classical monocytes in 
different populations.

Methods
Subjects
A total of 34 self-reported Black or African American 
females were recruited for this study: 16 patients with 
SSc and 18 healthy controls. All patients met the 2013 
ACR/EULAR classification criteria for SSc [38]. Cases 
and controls were age-balanced within 5 years.

Classical monocyte isolation
Peripheral blood (40  ml) was drawn by venipuncture 
into EDTA tubes and stored at 4 °C overnight. Peripheral 
blood mononuclear cells (PBMCs) were isolated using 
Sep-Mate tubes and Lymphoprep (Stem Cell Technolo-
gies, Cambridge, MA, USA) according to manufacturer 
guidelines. After isolation, any residual red blood cells 
were depleted via red blood cell lysis (144  mM NH4Cl 
and 17 mM Tris, pH 7.6), washed twice with 1X PBS, and 
stored at − 80  °C in 90% Fetal Bovine Serum (FBS)/10% 
dimethyl sulfoxide (DMSO). After thawing, PBMCs 
were stained with CD-14 Brilliant violet 421 (1:100) and 
CD-16 Brilliant violet 605 (1:100). Cells were incubated 
with antibodies for 30 min on ice in the dark. Both anti-
bodies were purchased from Biolegend (San Diego, CA, 
USA). Viability was assessed using Near-infrared Live/
Dead Fixable Dead Cell stain (Life Technologies, Carls-
bad, CA, USA) at a concentration of 50 μl/million cells. 
CD14++/CD16-cells were collected with a FACSAria III 
cell sorter (BD Biosciences, San Jose, CA, USA).

MethylationEPIC assays, quality control and batch 
normalization
DNA was extracted using DNeasy kits (Qiagen, German-
town, MD, USA) according to manufacturer protocols 
from classical monocytes (CD14++CD16-) isolated 
from 12 female African American SSc patients and 12 
female African American controls. DNA methylation was 
assessed using Illumina’s MethylationEPIC BeadChip 
(Illumina, San Diego, CA, USA). 500 ng of each sample 

was bisulfite converted using an EZ DNA Methylation 
Kit (Zymo, Tustin, CA, USA), amplified, hybridized and 
imaged. DNA methylation data for over 850,000 CpGs 
were generated per sample and preprocessed using 
GenomeStudio in the form of beta values, which is the 
estimate of the proportion of methylation in a cell popu-
lation. GenomeStudio also produced detection p values, 
which is the probability that the intensity is due to back-
ground noise rather than a true signal. After filtering out 
background noise, ComBat [94] was used as an empirical 
Bayes approach to correct for differences between 
batches. A single array containing 12 samples and 
approximately 20,000 CpGs separated at random was 
used to describe a batch to be normalized on our in-
house, high-performance computing cluster at the Hud-
sonAlpha Institute for Biotechnology. After correcting 
for batch effects, beta values between the two probe 
types, Infinium I & Infinium II, were normalized by using 
the equation: BetaType II Probe = Y + β1 × BetaType II Probe

+β2 × Beta2Type II Probe . The intercept and beta coefficients 
were calculated by fitting a second-order polynomial to 
beta values from paired Infinium I and Infinium II CpGs 
that were within 50 bp of each other as described previ-
ously [95].

Only good quality samples (successful probe ratio > 0.1) 
were included. CpG probes with detection p values over 
0.01 were removed. The R package ChAMP [96] was used 
to exclude non-CpG probes, probes that have been pre-
viously reported to bind to multiple locations [97], and 
probes with a bead count less than 3 in ≥ 5% of samples 
per probe.

Given the lack of genetic ancestry estimates, we used 
EPISTRU​CTU​RE, a method for the inference of ances-
try from methylation data that relies on reference data in 
which both genotype and methylation data are available 
[98]. The PCA plot generated using EPISTRU​CTU​RE 
shown in Additional file 1: Fig. S5 shows no evidence of 
population structure. Smoking is known to affect meth-
ylation across the genome; therefore, CpGs known to be 
associated with smoking were removed prior to analysis 
[99]. After pre-processing and filtering of the methylation 
data, 817,938  CpGs remained for downstream analysis. 
Genome-wide data methylation analysis was then per-
formed using the R statistical suite (version 3.6.3) [100]

Genome‑wide DNA methylation regression analysis
Linear regression analyses were performed at each CpG 
using the stats package in R [100] to test whether that 
particular CpG was associated with SSc by examining 
DNA methylation differences between patients and con-
trols. Principal components were calculated using the 
built-in R function prcomp() from the stats package and 
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used in our regression model to correct for unknown 
potential sources of variance such as admixture. In our 
model, disease status was considered the random effect, 
and the first two principal components were considered 
fixed; due to age being known to influence DNA methyla-
tion, it was also placed as a covariate:

The associated CpG p  values were then corrected 
using the Benjamini–Hochberg False Discovery Rate 
(FDR) method. Given the paucity of differentially meth-
ylated cytosines identified with FDR-corrected p < 0.05, 
cytosines with an FDR-corrected p < 0.4 are reported. The 
rationale for the FDR setting was guided by the desire 
to perform a system-level analysis and include as many 
CpGs sites as possible, as well as previous studies, dem-
onstrating that this threshold permits a sensitive analysis 
at a system level of genes that are relevant to the under-
lying biology of the trait [39, 40]. The premise that most 
CpGs have sufficient quality, coupled with the desire to 
increase discovery at the cost of additional loci being 
false positive results, is a reasonable premise for initial 
studies to pursue pathway and network analyses. To fur-
ther select an empirical threshold for significance using 
a data-informed approach, we generated the P–P plot to 
see the point of departure where the CpGs start deviat-
ing from the null (Additional file 1: Fig. S1). As shown in 
Additional file 1: Fig. S1, fitting a linear regression line for 
the theoretical domain of 0 < theoretical − log(p) < 3 and 
extrapolating line beyond 3 suggests that the line departs 
from fitting the empirical − log(p) data approximately at 
4. Thus, − log(p) > 4 is a reasonable empirical threshold 
for significance for system level analyses.

To minimize confounding due to smoking, the 3348 
CpGs reported as associated with smoking in Christian-
sen et  al. [99] were removed. This included CpGs repli-
cated in American Indian and African American samples. 
Another potential confounder on the DNA methylation 
patterns is the use of immunosuppressive therapies by 
most patients with SSc. Given the small sample size of 
this study and the potential risk of overfitting if adjusting 
for immunosuppressive use, we show instead that the use 
of immunosuppressive therapies does not heavily bias 
the association results, although there are several CpGs 
that show meaningful increases in beta coefficients due 
to immunosuppressive medication use (Additional file 1: 
Figs. S6 and S7). The top three CpGs most significantly 
associated with SSc among immunosuppressive users 
include cg22196946 in the 5′UTR near IL15, cg22187722 
in the 5′UTR near CPVL, and cg17710334 in an inter-
genic region. None of these CpGs reaches the empirical 

Methylation Beta Value ∼ β1 × Disease Status + β2

× Age at Collection + β3 × PC1 + β4 × PC2 + ε

threshold for significance among all SSc patients (Addi-
tional file 1: Fig. S7).

The power evaluation tool pwrEWAS was used to esti-
mate power as a function of sample size and effect size 
(Δβ) for two-group comparisons of DNAm assessed 
using Illumina Human Methylation BeadChip technology 
[101]. For a total number of 24 subjects (1:1 case/control 
ratio), and using liver as a proxy for a homogeneous cell 
population, this study has 4% power to detect differences 
in up to 6% in CpG-specific methylation across 20 CpGs 
between groups (the median DNA methylation difference 
between averaged methylation levels between cases and 
controls reported in Table 2), and 6% power to detect dif-
ferences in up to 8% in CpG-specific methylation across 
20 CpGs between groups (the maximum DNA meth-
ylation difference between averaged methylation levels 
between cases and controls reported in Table 2). Hence, 
this study is not powered to detect the DNA methylation 
differences reported in Table 2.

Associated CpGs identified as significant at FDR-cor-
rected p < 0.4 were used to identify the closest gene, and 
then, those genes were analyzed for common pathways 
and functions. Given the limited statistical power, explor-
atory analysis of clinical features was not computed.

RNA sequencing
Total RNA was extracted from classical monocytes iso-
lated from 16 female African American patients and 18 
female African American controls using the RNeasy 
Kits (Qiagen, Germantown, MD, USA) according to the 
manufacturer’s guideline. RNA integrity (RIN) was veri-
fied on an Agilent 2200 TapeStation (Agilent Technolo-
gies, Palo Alto, CA, USA). The RIN values ranged from 
1.8 to 9.0 with an average RIN of 5.8. Due to the low RIN, 
RNA sequencing libraries were prepared using Illumina’s 
TruSeq RNA Exome kit. Total RNA (40 ng) of was used 
to prepare RNA-Seq libraries following the protocol as 
described by the manufacturer (Illumina, San Diego, 
CA, USA). Libraries were clustered at a concentration 
to ensure an average of 25 million reads per sample on 
the cBot as described by the manufacturer (Illumina, San 
Diego, CA, USA). Clustered RNA-seq libraries were sin-
gle read sequenced using version 4 with 1X50 cycles on 
an Illumina HiSeq2500. Demultiplexing was performed 
utilizing bcl2fastq- v2.19 to generate Fastq files.

Gene expression analysis
Upon sequencing, data were analyzed by Rosalind, with 
a HyperScale architecture developed by OnRamp BioIn-
formatics. Individual sample reads were aligned to the 
hg19 reference genome using STAR and quantified using 
HTseq. The subsequent transcript data were imported 
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into R and the edgeR package used to preprocess the 
data. The transcript counts were normalized using the 
trimmed mean of M values (TMM) method. To account 
for potential non-biological variance in the gene expres-
sion data, a quasi-likelihood negative binomial general-
ized log-linear model [102] was used and the data tested 
for differential expression. FDR p values were then calcu-
lated for each transcript. Since no differentially expressed 
transcripts were identified with FDR-corrected  p < 0.05, 
an FDR-corrected  p < 0.4 was used. The rationale for 
the FDR setting was guided by the desire to perform a 
system-level analysis and include as many transcripts as 
possible, as well as previous studies demonstrating that 
this threshold permits a sensitive analysis at a system 
level of genes that are relevant to the underlying biology 
of the trait [39, 40].

RNASeqPower (version 1.39.0) was used to estimate 
the power given 16 cases and 18 controls, coverage depth 
(25 M reads) and a coefficient of variation of 0.4 as rec-
ommended for human samples and equivalent across 
groups [103]. Using an α = 0.0001, which based on our 
experience is a a good approximation to a FDR = 0.05, 
this study has 9%, 70%, and 97% power to detect dif-
ferential expression or fold change (FC) of 1.5, 2.0, and 
2.5 or higher, respectively. These FC correspond to 
logFC >|0.18|, logFC >|0.30|, and logFC >|0.40|, respec-
tively. Given the median logFC ~|0.40|, this study is pow-
ered to detect a reasonable fraction of the differentially 
expressed transcripts between cases and controls.

Expression quantitative trait methylation (eQTM) analysis
To identify associations between DNA methylation levels 
and gene expression of nearby genes, a linear regression 
model was created using the top CpGs and transcripts 
from both analyses, ranked by unadjusted p value. A 
total of 1272 differentially expressed transcripts that met 
an FDR-corrected p < 0.4 were used for this analysis. To 
correct for unknown sources of variation in the methyla-
tion beta scores (e.g., admixture, cellular contamination), 
the effects of the first two principal components were 
regressed out and the residuals used in downstream anal-
ysis. To correct for the variation in the RNA-seq data, 
the data were normalized using the TMM. CpGs within 
100 kb of the transcript start or end positions were asso-
ciated with the respective transcript. The RNA transcript 
was considered the random effect, and the methylation 
beta value and age of the patient were considered the 
fixed effects:

Transcript Value ∼ β1 × CpGBeta Score

+ β2 × Age at Collection + ε

Functional annotation enrichment analysis
The position of each CpG was annotated to the cor-
responding genomic location as provided by Illumina 
(TSS1500, TSS200, 5′ UTR, 1st Exon, Body, Exon bound-
aries, 3′ UTR, and intergenic). To investigate the dis-
tribution of differentially methylated CpGs (DMC) in 
different genomic locations, the top 100 CpGs were used 
to compare their localization in different genomic loca-
tions. Odds ratio (OR), 95% confidence intervals (CI), 
and p values were computed against the general distri-
bution of all CpGs of our dataset using GraphPad Prism 
(version 9.3.1). For regulatory annotation of the differ-
entially methylated CpGs, eFORGE v2.0 (https://​eforge.​
altiu​sinst​itute.​org/) [41–43] was used to identify if the 
associated CpGs were enriched in cell-specific regulatory 
elements, namely DNase I hypersensitive sites (DHSs) 
(markers of active regulatory regions) and loci with 
overlapping histone modifications (H3Kme1, H3Kme4, 
H3K9me3, H3K27me3, and H3K36me3) across available 
cell lines and tissues from the Roadmap Epigenomics 
Project, BLUEPRINT Epigenome, and ENCODE (Ency-
clopedia of DNA Elements) consortia data. Both the top 
100, as well as the top differentially methylated CpGs 
that met an FDR-adjusted p < 0.4, were entered as input 
of the eFORGE v2.0 analysis and tested for enrichment 
for overlap with putative functional elements compared 
to matched background CpGs. The matched background 
is a set of the same number of CpGs as the test set, 
matched for gene relationship and CpG island relation-
ship annotation. One thousand matched background sets 
were applied. The enrichment analysis was completed 
for different tissues, since functional elements may differ 
across tissues. Enrichment outside the 99.9th percentile 
(− log10 binomial p value ≥ 3.38) was considered statisti-
cally significant (red in Fig. 2).

For Gene Ontology (GO) and functional enrichment 
analysis, the Database for Annotation, Visualization and 
Integrated Discovery (DAVID) v6.8 [44, 45], and the 
Enrichr [46, 47] tools were used. For GO analysis, DAVID 
v6.8 was used via the web interface (https://​david.​ncifc​rf.​
gov/) using default settings. The gene lists corresponding 
to the top differentially methylated CpGs, the top differ-
entially expressed transcripts from the RNAseq analy-
sis, and top differentially expressed transcripts from the 
eQTM analysis (shown in Tables 2, 3, and 4, respectively) 
were used. Enrichr was also used via the web interface 
(https://​maaya​nlab.​cloud/​Enric​hr/), using the default set-
tings and the whole genome set as background. The gene 
lists in Tables  2, 3, and 4 were used for Biological Pro-
cess and Pathway enrichment. As output, results were 
exported from the GO Biological Process 2021 and the 
KEGG 2021 Pathways databases; p values are reported.

https://eforge.altiusinstitute.org/
https://eforge.altiusinstitute.org/
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
https://maayanlab.cloud/Enrichr/
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FDR	� False discovery rate
SSc	� Systemic sclerosis
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