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Abstract 

Background  Accumulation of saturated fatty acids (SFAs) in the liver is known to induce hepatic steatosis and 
inflammation causing non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). Although 
SFAs have been shown to affect the epigenome in whole blood, pancreatic islets, and adipose tissue in humans, and 
genome-wide DNA methylation studies have linked epigenetic changes to NAFLD and NASH, studies focusing on the 
association of SFAs and DNA methylation in human liver are missing. We, therefore, investigated whether human liver 
SFA content associates with DNA methylation and tested if SFA-linked alterations in DNA methylation associate with 
NAFLD-related clinical phenotypes in obese individuals.

Results  We identified DNA methylation (Infinium HumanMethylation450 BeadChip) of 3169 CpGs to be associated 
with liver total SFA content (q-value < 0.05) measured using proton NMR spectroscopy in participants of the Kuopio 
Obesity Surgery Study (n = 51; mean ± SD:49.3 ± 8.5 years old; BMI:43.7 ± 6.2 kg/m2). Of these 3169 sites, 797 over-
lapped with previously published NASH-associated CpGs (NASH-SFA), while 2372 CpGs were exclusively associated 
with SFA (Only-SFA). The corresponding annotated genes of these only-SFA CpGs were found to be enriched in path-
ways linked to satiety and hunger. Among the 54 genes mapping to these enriched pathways, DNA methylation of 
CpGs mapping to PRKCA and TSPO correlated with their own mRNA expression (HumanHT-12 Expression BeadChip). 
In addition, DNA methylation of another ten of these CpGs correlated with the mRNA expression of their neighboring 
genes (p value < 0.05). The proportion of CpGs demonstrating a correlation of DNA methylation with plasma glucose 
was higher in NASH-SFA and only-SFA groups, while the proportion of significant correlations with plasma insulin was 
higher in only-NASH and NASH-SFA groups as compared to all CpGs on the Illumina 450 K array (Illumina, San Diego, 
CA, USA).

Conclusions  Our results suggest that one of the mechanisms how SFA could contribute to metabolic dysregulation 
in NAFLD is at the level of DNA methylation. We further propose that liver SFA-related DNA methylation profile may 
contribute more to hyperglycemia, while insulin-related methylation profile is more linked to NAFLD or NASH. Further 
research is needed to elucidate the molecular mechanisms behind these observations.
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Background
Non-alcoholic fatty liver disease (NAFLD) is the most 
common chronic liver disease that spans in severity 
from simple steatosis to non-alcoholic steatohepatitis 
(NASH) and, ultimately, to hepatocellular carcinoma [1]. 
Excessive intake of dietary saturated fatty acids (SFAs), 
increased free FAs (FFAs) released into the circulation 
from adipose tissue, upregulated de novo lipogenesis in 
the liver, and production of new hepatic fatty acids from 
carbohydrates or proteins are all known to induce hepatic 
steatosis and inflammation, causing NAFLD and NASH 
[2–5].

The lipotoxic effects of FFAs such as stress, autophagy, 
lipoapoptosis, and inflammation resulting from an imbal-
ance in the hepatic FFAs availability and disposal are 
aggravated by the SFAs [6–8]. The largest contributor to 
the accumulation of hepatic triglycerides (TG) is satu-
rated fats [9]. An excessive accumulation of SFAs in liver 
TG in individuals with non-alcoholic fatty liver or NASH 
compared to the normal liver has been recently reported 
[10]. Moreover, evidence suggests that the increased 
hepatic SFAs levels are linked to the cellular, oxidative, 
endoplasmic reticulum, and mitochondrial stress in 
NAFLD [11–14]. In fact, based on in  vitro and in  vivo 
studies, overexposure of SFAs in the cell culture medium 
or in the diet leads to inflammation, altered insulin sign-
aling, and apoptosis in liver cells [15–17].

The pathogenesis of NAFLD is known to be modifi-
able by lifestyle factors and genetic variations [18], both 
of which may contribute to epigenetic dysregulation 
in NAFLD [19–21]. At present, the most widely and 
extensively investigated epigenetic modification, specifi-
cally in metabolic diseases, is DNA methylation [22]. It 

is a reversible change playing a critical role in regula-
tion of transcription, embryonic development, genomic 
imprinting, and chromatin structure [23]. These DNA 
methylome changes are often tissue specific and play a 
crucial role in reprogramming the cellular machinery as 
an adaptive response to calorie-excess environments, as 
in the case of NAFLD [22, 24].

Many lipids, including FFAs and SFAs, have been pro-
posed to cause NAFLD-linked epigenetic changes [25]. 
More specifically, SFA-induced changes in DNA meth-
ylation have been proposed in cultured human pancre-
atic islets and human adipose tissue. Furthermore, whole 
blood DNA methylation has been associated with dietary 
intake of fat in cross-sectional epidemiological studies 
carried out in normal-weight and obese children [26–29]. 
However, whether liver SFAs could influence the whole 
liver methylome has never been explored. Thus, the aim 
of the present study was to identify liver DNA methyla-
tion patterns that associate with hepatic SFAs content 
in obese individuals. In addition, we sought to explore 
whether these alterations in SFA-related DNA methyla-
tion associate with NAFLD-related clinical phenotypes.

Results
Liver total saturated fat content is elevated in NAFLD
The clinical characteristics of the Kuopio Obesity Sur-
gery (KOBS) study participants categorized based on 
their liver histology are shown in Table 1. Fasting serum 
triglycerides (TG) and insulin levels were significantly 
different across the three groups: normal liver, simple 
steatosis (SS), and non-alcoholic steatohepatitis (NASH) 
(p value < 0.05). The total liver saturated fat content (SFA, 
See Table  1) was significantly elevated in those with SS 

Table 1  Clinical characteristics and liver histology of study participants according to histological liver phenotype

Data are shown as mean ± SD or median (IQR). fS—Fasting serum; fP—fasting plasma; LDL-c—low-density lipoprotein cholesterol; HDL-c—high-density lipoprotein 
cholesterol; TG—triglycerides; N/Y—no/yes; n—number of individuals; and SFA—saturated fatty acids. aOne-way ANOVA test (continuous variable) or χ2 test 
(categorical variable) over the three study groups; post hoc Bonferroni correction was used for multiple testing, *p value < 0.05 versus normal liver

Normal liver SS NASH p valuea

Total, n 24 12 15 –

Men/Women, n 8/16 5/7 6/9 n.s.

Age (years) 49.6 ± 8.3 47.3 ± 8.2 50.3 ± 9.2 n.s.

BMI (Kg/m2) 43.0 ± 6.3 44.4 ± 5.5 44.1 ± 6.6 n.s.

fS-Total cholesterol (mmol/L) 4.1 ± 0.7 4.0 ± 0.9 4.1 ± 0.9 n.s.

fS-LDL-c (mmol/L) 2.4 ± 0.7 2.1 ± 0.7 2.4 ± 0.7 n.s.

fS-HDL-c (mmol/L) 1.0 ± 0.2 0.9 ± 0.1 1.0 ± 0.2 n.s.

fS-TG (mmol/L) 1.2 (1.0–1.6) 1.8 (1.3–2.3)* 1.3 (1.0–1.9) 0.027

fP-Glucose (mmol/L) 5.8 ± 0.6 6.0 ± 1.2 6.7 ± 1.6 n.s.

fS-Insulin (mU/L) 12.9 (7.6–19.2) 14.9 (10.0–21.8) 15.8 (12.6–28)* 0.041

Type 2 diabetes (N/Y), n 18/6 6/6 6/9 n.s.

Total liver SFA content 61.7 ± 19.7 101.0 ± 34.2* 123.9 ± 65.5* 0.00002
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and NASH as compared to those with normal liver (p 
value < 0.05). However, the saturated fat content was not 
different between the SS and NASH groups.

Identification of SFA‑related DNA methylation in human 
liver
We found that DNA methylation of 3169 CpG sites 
(CpGs), representing 1881 unique genes, was signifi-
cantly associated with liver SFA at a false discovery rate 
(FDR) below 5% (q-value < 0.05, adjusted for gender, body 
mass index (BMI), and age; Additional file  1: Table  S1). 
Methylation on five of these 3169 sites was significantly 
associated with liver SFA after Bonferroni correction 
(Additional file  1: Table  S1). Data from all the 51 indi-
viduals (Normal liver + SS + NASH) were combined for 
this analysis. We have previously shown that DNA meth-
ylation of 21,368 CpGs, representing 7788 unique genes, 
was associated with NASH [30]. In order to find the DNA 
methylation changes exclusively associated to SFA, we 
identified the CpGs specifically associated to SFA and 
not to NASH. In Fig. 1, we describe that among the 3169 
CpGs associated with liver SFA, 797 overlapped with 
those 21,368 that were previously observed to be NASH-
related (termed NASH-SFA). Consequently, the remain-
ing 2372 SFA-related CpGs, representing 1424 unique 
genes, were exclusively related to liver SFA (Only-SFA). 
Out of the 21,368 NASH-related CpGs [30], 20,571 were 
exclusively related to NASH (Only-NASH). From now 
on, we will address these as three groups named as fol-
lows, only-NASH, NASH-SFA, and only-SFA (Fig. 1).

Genomic location enrichment for the identified CpGs
The genomic location enrichment for all the significant 
CpGs in each group (Only-NASH, NASH-SFA, and only-
SFA) based on gene region showed significant differences 
between groups (Fig.  2A). For all the three groups of 

CpGs, the largest proportion of CpGs was localized in the 
gene bodies and the intergenic regions. Further upstream 
(TSS1500), NASH-SFA and only-SFA groups were found 
to have significantly reduced proportions, while for only-
NASH the proportions were higher compared to all 
450  K array. For all the near gene transcription starting 
points (TSS200, 5′UTR, and 1st Exon), among the three 
groups, the proportions of only-SFA associated CpGs 
were lower compared to CpG on the whole 450 K array. 
In fact, the proportions were also found to be reduced 
for only-NASH and NASH-SFA for the TSS200 and 1st 
Exon regions, when compared to all the whole 450  K 
array. However, for 5′UTR region, proportions of CpGs 
were found to be significantly increased in NASH-SFA 
group. At the end region of the genes (3′UTR), all the 
three groups followed a similar trend as in the upstream 
region: TSS1500 (Fig. 2A). The percentage of CpGs based 
on island functional categories shows significant overrep-
resentation of CpGs for all the three groups in the open 
sea and a significant underrepresentation in the CpG 
islands (Fig.  2B). Also, only-SFA associated CpGs were 
significantly more localized in the southern shelf region 
(2-4 kb from CpG islands).

Pathway analyses for the genes annotated to CpG sites
To better elucidate the biological mechanisms of the sig-
nificantly associated CpGs with SFA, we applied path-
way analyses to the annotated genes that were associated 
with only-SFA and NASH-SFA. As illustrated in Table 2, 
annotated genes to only-SFA were enriched for pathways 
related to morphine addiction, neuroactive ligand–recep-
tor interaction, and retrograde endocannabinoid sign-
aling. In contrast, NASH-SFA genes were significantly 
enriched for pathways related to cancer, inflammatory 
response, and insulin signaling.

The pathways shown above are Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways using the Web-
Gestalt tool. The gene overlap means the number of 
genes identified in our dataset/total number of genes 
known to be involved in a particular pathway. q-value 
(FDR) for each pathway is shown in the last column. 
EGFR—Epidermal growth factor receptor; PI3K-Akt—
phosphatidylinositol 3‑kinase/protein kinase B; and 
Rap1-Ras-proximate-1.

Interaction mapping for only‑SFA annotated genes
A total of 54 genes corresponding to the only-SFA 
enriched pathways (Table  2) were used as an input to 
build an interaction map using the StringDB online tool 
[32]. Based on the interaction confidence level (edge 
confidence), the topmost interactive genes were: CAC-
NA1B (calcium voltage-gated channel subunit alpha1 
B), CNR1 (cannabinoid receptor 1), GNAI3 (guanine 

Fig. 1  Overlap between the NASH-related and SFA-related CpGs 
in human liver. The Venn diagram represents the number of CpGs 
belonging to specific only-NASH and only-SFA groups and to the 
ones overlapping NASH-SFA group. The NASH-related CpG sites were 
defined based on our previous publication [30], and the SFA-related 
CpG sites were identified as described in the results
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nucleotide-binding protein [G Protein], alpha-inhibiting 
activity polypeptide 3), PRKCA (protein kinase C alpha), 
GNGT2 (guanine nucleotide-binding protein G(I)/G(S)/
G(O) subunit gamma-T2), GNG12 (guanine nucleotide-
binding protein G(I)/G(S)/G(O) subunit gamma-12), 
ADCY6 (adenylate cyclase type 6), and DRD2 (dopa-
mine receptor D2). From these genes, those that were 
also found to be enriched in more than one pathway are 
marked with a star in Fig.  3. In addition to the KEGG 
pathways analysis, we found three GABA-related genes 

to be involved in all the four enriched pathways, GABRB1 
(gamma-aminobutyric acid type A receptor subunit 
beta1), GABRD (gamma-aminobutyric acid type A recep-
tor subunit delta), and GABRP (gamma-aminobutyric 
acid type A receptor subunit Pi).

SFA‑related DNA methylation alterations correlate 
with gene expression
The same set of CpGs related to only-SFA (Table  2 
and Fig.  3) were also tested for their correlation of 

Fig. 2  Genomic location enrichment for CpGs associated with SFA and/or NASH in human liver. Percentage of all CpGs located in relation to 
(A) nearest gene regions and (B) CpG island having important implications for the regulation of gene expression for only-NASH, NASH-SFA, and 
only-SFA groups, with percentage of all 450 K CpGs as control. CpG islands were defined as DNA sequences (as 500 base windows; excluding most 
repetitive Alu-elements) with a GC base composition greater than 50% and a CpG observed ratio [31] of more than 0.6. TSS1500-region within 
1500 base pair upstream of a transcription start site; TSS200-region within 200 base pair upstream of a TSS; UTR-Untranslated region; N_Shore-2 kb 
regions upstream of CpG island; S_Shore-2 kb regions downstream of CpG island; N_Shelf-2 kb regions upstream of CpG island shore; S_Shelf-2 kb 
regions downstream of CpG island shore; and Open Sea-regions > 4 kb from CpG islands. *Indicates that the proportion of CpGs in only-NASH 
(n = 20,571), NASH-SFA (n = 797), and only-SFA (n = 2372) was significantly (p value < 0.01) different compared to all sites covered on the 450 K 
BeadChip (All 450 K), (χ2 test of independence with 1° of freedom). Each bar represents % of sites



Page 5 of 12Sehgal et al. Clinical Epigenetics           (2023) 15:21 	

DNA methylation with the mRNA expression. Out of 
64 CpGs (54 annotated genes), gene expression data 
were available for 14 genes on the Illumina expression 

array. We found the gene expression of PRKCA and 
TSPO (Translocator Protein) to be associated with 
the methylation of the corresponding CpG site with 
a p value < 0.05 (PRKCA-cg14648237 and TSPO-
cg13160331, Table 3). Alternatively, we correlated DNA 
methylation of all the 64 CpGs with the expression 
for transcripts located in the genomic region around 
these CpGs (within the cis distance 500  kb upstream 
and 100  kb downstream of the gene; Additional file  5: 
Table  S2) and identified ten significant correlations 
between the DNA methylation of the CpGs and mRNA 
expression (p value < 0.05, Table  3). Among these, the 
strongest correlation was the one between methylation 
of cg11821200 and mRNA expression of PRKAA1 (pro-
tein kinase AMP-activated catalytic subunit alpha 1). 
We also found correlations between DNA methylation 
of cg07011711 and cg00437258 with the mRNA expres-
sion of SDHAF2 (succinate dehydrogenase complex 
assembly factor 2) and RAC1 (Rac family small GTPase 
1), respectively (Table 3).

Table 2  Pathway enrichment for the NASH-SFA- and only-SFA-
associated genes

Pathways Gene overlap q-value

Only-SFA Morphine addiction 18/91 0.012

Retrograde endocannabinoid 
signaling

19/101 0.012

Neuroactive ligand–receptor 
interaction

36/278 0.034

NASH-SFA Pathways in cancer 25/397 0.0031

EGFR tyrosine kinase inhibitor 
resistance

9/81 0.022

Melanoma 8/71 0.031

Endocytosis 16/260 0.032

PI3K-Akt signaling pathway 19/341 0.032

Rap1 signaling pathway 14/212 0.032

Fig. 3  Interaction map of 54 genes corresponding to the enriched KEGG pathways for only-SFA. The network nodes represent proteins and edges 
represent protein–protein associations. The genes with maximum interactions or involved in all four pathways are marked with a black star. The 
line thickness is the edge confidence that indicates the strength of data support (based on homology, co-expression, experimentally determined 
interactions, database annotations, and automated text mining). The edge confidence represented by the thickness of the connecting lines is 
categorized into four levels, low, medium, high, and highest
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Correlation of SFA‑related DNA methylation of CpGs 
with clinical variables
In an effort to decipher the clinical significance, we tested 
the correlations of DNA methylation of the three groups 
of CpGs (Only-NASH, NASH-SFA, and only-SFA) with 

the laboratory measurements reflecting lipid and glucose 
metabolism: serum lipids, serum insulin, and plasma glu-
cose levels (represented as a heatmap in Additional file 2: 
Fig. S1; adjusted p value < 0.1 tabulated in Additional 
file 6: Table S3). Using these data, we calculated the pro-
portions of significantly correlated CpGs in each of these 
groups compared to the proportion of significantly cor-
related CpGs in the whole 450  K BeadChip array. The 
proportions of significantly correlated CpGs were found 
to be statistically significantly higher for fasting plasma 
glucose, fasting serum insulin, and fasting serum TG in 
only-SFA group when compared to the proportions in 
the whole 450 K array (p value < 0.05, Fig. 4). For plasma 
glucose levels, the proportions of significantly correlated 
CpGs were found to be increased for all three groups, 
when compared to all 450  K. Interestingly, for serum 
insulin levels the proportions of correlated CpGs for 
only-SFA were found to be significantly lower as com-
pared to only-NASH and NASH-SFA groups, where the 
proportions were found to be higher compared to the 
whole array. An opposite trend was observed for the TG 
levels, with significantly higher proportions of correlated 
CpGs for only-SFA and lower proportions for only-NASH 
and NASH-SFA, compared to the whole 450 K. All these 
comparisons were also significant (p value < 0.05) when 
adjusted p value was used for the correlations.

Correlation of individual SFAs with the SFA‑related DNA 
methylation
Next, we checked if individual SFAs (14:00-myristic 
acid, 15:00-pentadecanoic acid, 16:00-palmitic acid, 

Table 3  Pearson correlations (r) between DNA methylation and 
mRNA expression at p value < 0.05

1 Infinium HumanMethylation450 BeadChip-based DNA methylation and 
2HumanHT-12 Expression BeadChip-based mRNA expression. PRKCA—Protein 
kinase C alpha; PRKAA1—protein kinase AMP-activated catalytic subunit 
alpha 1; TSPO—translocator protein; SDHAF2—succinate dehydrogenase 
complex assembly factor 2; RAC1—Rac family small GTPase 1; DUSP28—dual 
specificity phosphatase 28; ABTB1—ankyrin repeat and BTB domain-containing 
1; C14orf132—chromosome 14 open reading frame 132; FCHSD2—FCH and 
double SH3 domains 2; GALE—UDP-galactose-4-epimerase; ZDHHC4—zinc 
finger DHHC-type containing 4; and KDM5B—lysine demethylase 5B. The 
Pearson correlation test was used for the analysis, and p value < 0.05 was 
considered statistically significant. *p value < 0.1 (adjusted for multiple testing)

CpG ID1 Transcript ID2 r p value

Gene expres-
sion (self )

cg14648237 PRKCA 0.585 0.0066*

cg13160331 TSPO − 0.537 0.0145

Gene expres-
sion (neigh-
boring)

cg11821200 PRKAA1 0.274 0.0005*

cg00437258 RAC1 − 0.565 0.0093

cg07011711 SDHAF2 − 0.547 0.0124

cg15892963 C14orf132 0.527 0.0168

cg24191821 FCHSD2 0.504 0.0232

cg19678564 KDM5B 0.468 0.0401

cg26151675 GALE 0.461 0.0407

cg14109579 DUSP28 − 0.459 0.0416

cg00437258 ZDHHC4 0.449 0.0465

cg18274619 ABTB1 -0.445 0.0490

Fig. 4  Bar plot representing the percentage of CpG sites associated significantly with each of the clinical variables. For each of the clinical variables 
(glucose, insulin, total cholesterol, LDL-c, HDL-c, and TG), the proportions of the significantly (p value < 0.05) correlated CpGs for four groups 
defined in the key were analyzed. *Indicates the proportion of sites significantly (p value < 0.05) different compared to the proportions for the 450 K 
BeadChip (All 450 K) for each clinical variable, tested using the χ2 test of independence with 1° of freedom
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17:00-heptadecanoic acid, and 18:00-stearic acid) cor-
relate distinctly with SFA-related DNA methylation. 
The data demonstrating correlations of these individual 
SFAs proportions (mol%) with the DNA methylation of 
the CpGs within each of the groups (only-NASH, NASH-
SFA, and only-SFA) are shown in Additional file  3: Fig. 
S2. The correlation analysis was also adjusted for multi-
ple testing (p value < 0.1), and the proportions were cal-
culated across the groups (Additional file  7: Table  S4). 
We found that palmitic and stearic acid correlated more 
often with DNA methylation of the CpGs linked with 
SFA as compared to other SFAs in NASH-SFA and only-
SFA groups.

Discussion
In the present study, we observed that liver content of 
total saturated fat (SFA) associates with the DNA meth-
ylation profile in the liver of obese individuals, suggesting 
that SFA may regulate hepatic DNA methylation. When 
excluding those CpGs that we previously identified to be 
NASH-related [30], we found that the CpGs solely meth-
ylated in relation to liver SFA were enriched for pathways 
modulating satiety and food intake. These results were 
supported by the findings that methylation in some of 
these CpGs correlated with the expression of genes anno-
tated to these CpGs, or with the expression of neighbor-
ing genes. The observed differences in correlations of the 
DNA methylation of these with SFA- and NASH-related 
CpGs with fasting plasma glucose and serum insulin lev-
els may reveal specific mechanisms related to NASH-
linked clinical phenotypes.

To our knowledge, this is the first study that attempts 
to identify SFA-related DNA methylation changes in the 
human liver. We identified total liver saturated fat con-
tent measured using proton nuclear magnetic resonance 
(NMR), to be associated with DNA methylation of 3169 
CpGs in the current study (Fig. 1). It is well known that 
epigenetics plays an important part in the development 
of NAFLD and is often considered a modifiable contrib-
uting factor [19, 21, 33]. Earlier studies carried out in 
humans have reported SFA-related DNA methylation 
changes in whole peripheral blood, adipose tissue, and 
cultured pancreatic islets [27–29]. Many of the identified 
CpG methylation sites in these studies were found to be 
linked with glucose and lipid metabolism, in line with the 
findings in this study. Furthermore, in  vitro and in  vivo 
studies have highlighted the detrimental effects of SFAs 
on mechanisms linked with inflammation, lipid and glu-
cose metabolism, and insulin signaling at the molecular 
and epigenetic levels [25, 34].

We found that only-SFA associated CpGs localized in 
the gene bodies and intergenic regions, with lower pro-
portions in the near and far transcription sites (Fig.  2). 

DNA methylation in the gene body region has been pre-
viously found to display a direct effect on gene expres-
sion [35]. Accordingly, DNA methylation changes in 
adipose tissue resulting from gastric bypass surgery have 
been reported to be mostly located in CpGs concen-
trated in the body and intergenic regions [36]. In sum-
mary, we suggest that the SFA-related differences in DNA 
methylation in relation to genetic location may link to 
epigenetic regulation. Additionally, to rule out the possi-
bility of that a SNP on the CpG site would confound our 
results, the USCS genome browser was searched based 
on genomic coordinates for single nucleotide polymor-
phism (SNP). We found only one SNP (rs138784380—
genomic deletion) that was on the corresponding CpG 
site (cg05921947, ADCY2).

The CpGs from which methylation was specifically 
associated with liver SFA, and not with NASH, were 
enriched for neuroactive ligand–receptor interaction, 
morphine addiction, and retrograde endocannabinoid 
signaling pathways (Table  2). The role of endocannabi-
noids and related signaling molecules in controlling food 
intake and satiety is well established [37–39]. This is in 
line with the findings that many studies have identified 
that dietary FA composition differentially affects appetite 
and acts as endocannabinoid receptor ligands, with the 
SFAs being on the harmful end of the spectrum [40–42]. 
Thus, our current results highlight the probable involve-
ment of SFAs in the regulatory mechanisms linked with 
hunger and energy intake. The effects of dietary fatty 
acids are heterogeneous in terms of metabolic and physi-
ologic outcomes that are most correctly measured as 
diet-induced thermogenesis (DIT) and energy expendi-
ture (EE) [43]. Dietary SFAs are linked with more weight 
gain compared to other FAs, attributed to the fact that 
SFA is more favored in the body as a storage nutrient 
since it is oxidized slower than other FAs [43]. It is very 
interesting to note that high-fat diet, specifically SFA, has 
been found to be related to development of obesity, with-
out ingestion of too many calories, indicating a direct 
effect on feeding efficiency [43]. It has been also sug-
gested that hepatic neuronal network is a major player in 
the regulation of calorie intake and energy expenditure, 
hence affecting the feeding efficiency [44]. Furthermore, 
alterations in hepatic sympathetic neuronal activity have 
been linked with obesity and NAFLD [45, 46]. Although 
our results concentrating on SFAs and liver we cannot 
speculate the mechanisms regulating energy metabo-
lism centrally, our findings suggest a connection between 
SFAs, satiety, and NAFLD development.

Our results indicate that the 54 genes annotated to 
only-SFA CpGs also play a major role in maintaining 
the metabolic functions of the liver, mainly by regulat-
ing glucose and insulin metabolism (Fig. 3). For example, 
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the gene CACNA1B codes for a calcium ion channel that 
regulates glutamate transport across the cell membrane, 
which is a major substrate for glucose production. There 
were many genes coding for G-proteins and their subu-
nits, such as GNAI3, GNGT2, GNG12, GABRB1, GABRP, 
and GABRD. We agree that many of these, such as 
GABRB1, GABRP, and GABRD genes, are not known to 
be major regulators in the liver. Most of them are essen-
tial for a variety of cellular functions, and few of these 
had been identified to be major players in NAFLD pro-
gression [47–49]. We also identified a key gene, PRKCA, 
characterized as a lipid-dependent kinase with a major 
role in both positive and negative modulation of insulin 
action [50]. Additionally, we observed DNA methylation 
of TSPO, encoding a potential molecular imaging bio-
marker for noninvasively distinguishing NAFLD, [51] to 
be related with SFA and associated with TSPO mRNA 
expression. Finally, we acknowledge that many of the 
genes related to identified CpG sites are primarily identi-
fied as neuronal genes, and thus, their role in liver metab-
olism remains unclear.

We also found DNA methylation of another ten of 
these CpGs correlated with the mRNA expression of their 
neighboring genes (Table 3). Most of the identified genes 
were involved in functions related to neurotransmis-
sion and substrate metabolism, such as PRKAA1, RAC1, 
SDHAF2, C14orf132, FCHSD2, GALE, and ZDHHC4. 
These genes have previously been found to be key players 
in controlling energy metabolism and appetite by actively 
sensing and responding to stimuli, most importantly to 
the nutrients [52–57]. Interestingly, we found, KDM5B, 
a gene encoding lysine-specific histone demethylase that 
belongs to the jumonji/ARID domain-containing family 
of histone demethylases. In general, histone methylation 
plays an important role in epigenetic regulation of gene 
expression and hence might be of biological relevance in 
the case of SFA. Overall, these results reflect that SFAs 
seem to influence the gene expression changes of impor-
tant genes by affecting the DNA methylation.

The interesting novel finding was that fasting plasma 
glucose levels were more often correlated with the SFA-
related CpGs, while for the only-NASH CpGs the most 
significant associations were with fasting serum insulin 
levels (Fig.  4). Accordingly, we have previously shown 
that NASH-related epigenetic alterations associate with 
changes in insulin action, [30] Contrary to what was 
expected based on previous studies, [58, 59], we did not 
find any significant change in the proportions of the 
only-SFA associated CpGs and cholesterol and/or LDL-c 
levels. Nonetheless, the percentage of significantly asso-
ciated CpGs for HDL-c and TG levels were significantly 
higher for only-SFA, as compared to the coverage on the 
whole 450 K array (Fig. 4).

We found palmitic and stearic acid to be the most cor-
related more often with DNA methylation of the CpGs 
linked with SFA. Earlier studies in humans and human-
derived cells have found that both palmitic and stearic 
acids actively interact with the epigenome [25, 27, 29, 60]. 
For instance, excess palmitic and stearic acid is known 
to induce inflammation and metabolic dysregulations in 
various cell models (including primary murine hepato-
cytes) along with alterations in histone acetylation and 
DNA methylation [61–64]. Our findings reiterate that 
among the individual SFAs, both palmitic and stearic 
acids are the main contributors to the observed SFA-
related correlation with DNA methylation.

We acknowledge that the current study is cross-sec-
tional and, hence, limits our conclusions related to cau-
sation. However, it is unethical to have follow-up liver 
biopsies in these types of studies. In addition, the study 
size is limited and as all the subjects were morbidly 
obese, we cannot generalize the results to lean or nor-
mal-weight subjects. However, with this unique dataset 
with liver samples collected during the bariatric surgery 
from a gender-, BMI-, and age-matched study cohort, we 
were able to have a holistic view of the liver, monitoring 
simultaneously histology, DNA methylation, and gene 
expression.

Conclusions
In conclusion, we propose that one of the mechanisms 
how SFA may contribute to the metabolic dysregulation 
in NAFLD might occur at the level of DNA methyla-
tion. In addition, we suggest that liver SFA-related differ-
ences in DNA methylation profile may contribute more 
to hyperglycemia, while insulin-related differences are 
more linked to changes in methylation specific to NASH 
in this particular study population and setting. Due to the 
cross-sectional study design, we fully admit no conclu-
sions about causality are possible. Further research is also 
needed to elucidate the mechanistic links of our current 
findings.

Methods
Study participants and analyses of clinical and metabolic 
parameters
Participants were selected from an ongoing Kuopio 
Obesity Surgery (KOBS) Study [65]. Fifty-one individu-
als undergoing laparoscopic Roux-en-Y gastric bypass 
(LRYGB) operation (mean ± SD, 49.3 ± 8.5  years old; 
BMI, 43.7 ± 6.2  kg/m2; 19 males) were included. All 
individuals had their anthropometric and biochemi-
cal evaluations done before the surgery. Fasting serum 
samples were subjected to lipid profiling and insulin 
measurements, while fasting plasma glucose levels were 
measured, as described before [66]. Type 2 diabetes was 
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defined according to World Health Organization (WHO) 
criteria. The study was performed in accordance with the 
Declaration of Helsinki. Written informed consent was 
obtained from all participants, and the study protocol 
was approved by the Ethics Committee of the Northern 
Savo Hospital District (54/2005, 104/2008, and 27/2010).

Liver histology and liver phenotype
Liver biopsies were obtained with ultrasonic scissors dur-
ing the elective LRYGB operation from all the patients 
participating in the KOBS study. The overall histological 
assessment of liver biopsies was performed by a patholo-
gist according to the standard criteria [67, 68]. Individu-
als were then grouped into one of the three categories: 
1. Normal liver without any steatosis, inflammation, bal-
looning, or fibrosis, 2. SS (steatosis > 5% without evidence 
of hepatocellular ballooning, inflammation, or fibrosis), 
or 3. NASH (detailed in Table 1) [65, 66].

Liver total SFA content using NMR spectroscopy
Fasting concentrations of liver SFA content were ana-
lyzed by proton nuclear magnetic resonance (NMR) 
spectroscopy in native liver samples. At first, the liver 
samples were homogenized, mixed, sonicated, centri-
fuged, and dried. Prior to NMR analysis, the extracted 
lipids were redissolved into 600  µl of CDCl3 contain-
ing 0.03% of tetramethylsilane as a reference substance. 
1H NMR spectra of extracted lipids were recorded on 
a Bruker Avance III HD 600 NMR spectrometer with 
acquisition time of 5  s and the relaxation delay of 15  s, 
as described previously [66]. The PERCH NMR software 
was used for all the lineshape fitting analyses.

Quantification of individual SFAs using gas 
chromatography
The liver fatty acid composition in triglycerides (TG), 
cholesteryl esters (CE), and phospholipids (PL) was 
measured by gas chromatography (GC). The liver fatty 
acids were analyzed according to previously described 
methods [66]. In short, liver lipids were extracted with 
chloroform–methanol (2:1), and the lipid fractions were 
separated by solid phase extraction with an aminopro-
pyl column. Fatty acids in TG, CE, and PL were trans-
methylated with boron trifluoride in methanol and were 
analyzed with a 7890 A gas chromatograph (Agilent 
Technologies, Inc., Wilmington, DE, USA) equipped with 
a 25-m FFAP column using nonadecanoic acid as the 
internal standard as detailed before [66]. The total SFAs 
in each of these fractions (molar percentages, mol%) were 
then correlated with the liver total SFA content identified 
using the NMR spectroscopy (Additional file 4: Fig. S3). 
The TG fraction was found to be most strongly correlated 

(r = 0.35, p value < 0.05), and the individual SFAs from 
this fraction were considered for further analyses.

DNA methylation and gene expression in human liver
The DNA extracted from the human liver biopsies was 
used for DNA methylation analysis using Infinium 
HumanMethylation450 BeadChip (Illumina, San Diego, 
CA, USA). The raw methylation data in β-values were 
converted to M-values for bioinformatic and statistical 
analyses; however, β-values were used for describing the 
data and creating figures as reported earlier along with 
the methodology [30, 69]. DNA methylation of 455,526 
CpGs was associated with liver SFA content. RNA 
expression was analyzed in liver samples from a subset 
of individuals included in this study (n = 20) using the 
HumanHT-12 Expression BeadChip (Illumina). The array 
covers 28,688 coding transcripts, and all the procedures 
were performed in accordance with the manufacturer’s 
recommendations and are detailed elsewhere [69]. A 
total of 12,064 transcripts passed the quality control filter 
and were considered for further analysis.

Identification of SFA‑related DNA methylation sites 
including genomic enrichment analysis
To identify differences in DNA methylation in the liver 
associated with liver total SFA content, a linear regres-
sion model was used including gender, BMI, and age as 
covariates and DNA methylation as the dependent vari-
able. To account for multiple testing in the genome-wide 
analysis, we applied false discovery rate (FDR) as well as 
Bonferroni correction and considered significant probes 
with q-value < 0.05.

We overlapped the identified CpGs with the ones we 
had previously found to be associated with NASH [30], to 
get three distinct datasets, only-NASH, NASH-SFA, and 
only-SFA CpGs. Comparison of these three datasets to 
annotated function categories, including relation to genes 
(within 1500 bp of a transcription start site [TSS], 200 bp 
of a TSS, a 5′ untranslated region [UTR], first exon, gene 
body, 3′UTR, and intergenic) and CpG islands (Island, 
shore, shelf, open sea), was performed using UCSC 
(University of California Santa Cruz) Genome Browser 
annotations supplied by Illumina. A χ2 test of independ-
ence with 1° of freedom was used to determine whether 
there was evidence of enrichment for any of these groups 
as compared to the coverage on the 450 K BeadChip. (p 
value < 0.01 was considered statistically significant.)

Pathway analysis of genes mapped to CpG sites associated 
with liver SFA
We performed a KEGG pathway analysis using the Web-
Gestalt tool [70] to identify biological pathways enriched 
for genes mapped to CpGs associated with liver SFA 
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(q-value < 0.05). For this, we considered the only-SFA 
and NASH-SFA groups separately. StringDB (Version 
11.5) was used to visualize the gene interactions for 
the enriched pathways and selection of the genes [31]. 
The top genes with the maximum interaction nodes or 
involvement in all the enriched pathways were shortlisted 
and discussed. We also correlated these top-ranking 
CpGs with the mRNA expression of their nearby gene(s) 
(within the cis distance 500  kb upstream and 100  kb 
downstream of the gene, Additional file 5: Table S2), and 
p value < 0.05 was considered statistically significant.

Statistical analyses
Clinical data are presented as mean ± SD or median 
(interquartile range: IQR). One-way ANOVA (continu-
ous variable) or χ2 test (categorical variable) was used 
to study the differences in the clinical variables, liver 
histology, and total SFA content for the three study 
groups (normal liver, simple steatosis (SS), and NASH; 
n = 51). After applying further post hoc Bonferroni cor-
rection for multiple testing, p values < 0.05 were consid-
ered significant.

Pearson correlation analysis was used to corre-
late DNA methylation of selected CpGs with gene 
expression, clinical variables, and individual SFAs 
(14:00-myristic acid, 15:00-pentadecanoic acid, 
16:00-palmitic acid, 17:00-heptadecanoic acid, and 
18:00-stearic acid). For these analyses, a p value < 0.05 
was considered statistically significant. For the correla-
tions with clinical variables, a χ2 test of independence 
with 1° of freedom was used to determine if the propor-
tion of sites was significantly (p value < 0.05) different 
for each variable as compared to the coverage on the 
450 K BeadChip.
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