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Abstract 

Background  Intraductal papillary mucinous neoplasms (IPMNs), a type of cystic pancreatic cancer (PC) precursors, 
are increasingly identified on cross-sectional imaging and present a significant diagnostic challenge. While surgical 
resection of IPMN-related advanced neoplasia, i.e., IPMN-related high-grade dysplasia or PC, is an essential early PC 
detection strategy, resection is not recommended for IPMN-low-grade dysplasia (LGD) due to minimal risk of carcino‑
genesis, and significant procedural risks. Based on their promising results in prior validation studies targeting early 
detection of classical PC, DNA hypermethylation-based markers may serve as a biomarker for malignant risk stratifica‑
tion of IPMNs. This study investigates our DNA methylation-based PC biomarker panel (ADAMTS1, BNC1, and CACNA1G 
genes) in differentiating IPMN-advanced neoplasia from IPMN-LGDs.

Methods  Our previously described genome-wide pharmaco-epigenetic method identified multiple genes as poten‑
tial targets for PC detection. The combination was further optimized and validated for early detection of classical PC 
in previous case–control studies. These promising genes were evaluated among micro-dissected IPMN tissue (IPMN-
LGD: 35, IPMN-advanced neoplasia: 35) through Methylation-Specific PCR. The discriminant capacity of individual and 
combination of genes were delineated through Receiver Operating Characteristics curve analysis.

Results  As compared to IPMN-LGDs, IPMN-advanced neoplasia had higher hypermethylation frequency of candidate 
genes: ADAMTS1 (60% vs. 14%), BNC1 (66% vs. 3%), and CACGNA1G (25% vs. 0%). We observed Area Under Curve (AUC) 
values of 0.73 for ADAMTS1, 0.81 for BNC1, and 0.63 for CACNA1G genes. The combination of the BNC1/ CACNA1G 
genes resulted in an AUC of 0.84, sensitivity of 71%, and specificity of 97%. Combining the methylation status of the 
BNC1/CACNA1G genes, blood-based CA19-9, and IPMN lesion size enhanced the AUC to 0.92.

Conclusion  DNA-methylation based biomarkers have shown a high diagnostic specificity and moderate sensitiv‑
ity for differentiating IPMN-advanced neoplasia from LGDs. Addition of specific methylation targets can improve 
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the accuracy of the methylation biomarker panel and enable the development of noninvasive IPMN stratification 
biomarkers.

Keywords  Pancreatic cyst, Pancreatic cancer, Methylation-specific biomarker

Background
Intraductal papillary mucinous neoplasms (IPMNs), 
a type of cystic pancreatic cancer (PC) precursors, 
are increasingly identified on cross-sectional imag-
ing and present a significant diagnostic challenge [1]. 
IPMNs necessitate accurate differentiation from non-
precancerous lesions (such as pseudocysts, and serous 
cystadenoma) as well as malignant risk stratification. 
Histologically, resection of IPMN-associated advanced 
neoplasia including high-grade dysplasia (HGD) or pan-
creatic cancer (PC) and attainment of negative margins, 
has been demonstrated to improve patient prognosis 
and, therefore, is a critical early PC detection strategy—
[2]. The resection of IPMN-low-grade dysplasia (LGD) 
is not recommended due to significant procedural risks 
and minimal risk of developing invasive PC. Stratifica-
tion inaccuracies may culminate in false-negative results 
risking interval IPMN progression, while false positives 
may lead to unnecessary surgical resections. IPMN strati-
fication into LGD and advanced neoplasia is a critical 
domain which warrants dedicated research and has been 
the focus of this study.

Previously, clinical-morphologic features, such as cyst 
size, CA19-9 levels, etc., have been utilized to attempt 
classification of IPMNs into those with worrisome fea-
tures or high-risk stigmata and the remaining low-risk 
IPMNs [3–5]. Currently accepted Fukuoka consensus 
guidelines have low sensitivity and specificity (sensitiv-
ity 56–81%; specificity: 69–73%), and evidence accrued 
over the years has demonstrated that IPMN stratifica-
tion-based solely on cyst morphology is less than ideal 
[6]. Augmentation of the accuracy of morphologic strati-
fication with additional biomarkers has been advocated 
for early detection of prognostically significant IPMN-
related advanced neoplasia from LGD.

Hypermethylation of promoter CpG islands occurs 
early in pancreatic carcinogenesis and may cause silenc-
ing of tumor suppressor genes [7]. Our previous work 
demonstrated promising results in the detection of clas-
sical PC by utilizing hypermethylation of candidate genes 
identified using a genome-wide pharmaco-epigenetic 
approach with high diagnostic sensitivity (81–97.4%) 
and specificity (85–91.6%) [8, 9]. Our ongoing work 
has investigated the utility of DNA methylation-based 
biomarker strategy for stratification of precancerous 
lesions. The current study investigates the diagnostic util-
ity of aberrant DNA methylation of A Disintegrin-like 

Metalloproteinase with Thrombospondin type 1 motif 
1 (ADAMTS1), Basonuclein 1 (BNC1), and T-type cal-
cium channel (CACNA1G) genes in differentiating histo-
logically defined IPMN-related advanced neoplasia from 
IPMN-LGDs.

Results
Patient demographics
The study analyzed a random selection of 70 tissue sam-
ples from IPMN patients who underwent surgical resec-
tion, matched 1:1 IPMN-LGD versus IPMN-advanced 
neoplasia. Patients met the criteria for surgical resection 
based on currently available clinical guidelines [3–5]. The 
overall study population had a median age of 71.5 years, 
predominately male 51.3%, and White 92.9% (Table  1). 
The median size of the lesion resection was 3  cm, and 
18.6% of lesions had elevated blood carbohydrate anti-
gen 19-9 (CA19-9, ≥ 37 U/mL). A history of current and 
past smoking was present in 15.7% and 27.1% of patients, 
respectively. Most patients (77.6%) underwent a pancrea-
ticoduodenectomy. The IPMN-advanced neoplasia and 
LGD groups were comparable in terms of sex distribution 
(female: 51.4 vs. 45.7%), smoking history (20% vs. 11.4%), 
and age distribution (72.5 years vs. 70.0 years) (Table 1). 
However, IPMN-related advanced neoplasia had a larger 
size (3.3  cm vs. 2.5  cm; P < 0.05) and CA19-9 positivity 
(31.4% vs. 5.7%; P < 0.01) when compared to IPMN-LGD.

Hypermethylation of ADAMTS1, BNC1, and CACNA1G genes 
among IPMNs
In the methods section, we describe conventional and 
quantitative methylation-specific polymerase chain reac-
tion (MS-PCR), which enabled the calculation of CpG 
island methylation in the promoter region of ADAMTS1, 
BNC1, and CACNA1G genes. Each gene was analyzed 
for methylation frequency in IPMN-advanced neoplasia 
and IPMN-LGD tissue samples (Fig.  1A). IPMN-related 
advanced neoplasia had significantly higher methylation 
of ADAMTS1 gene as compared to IPMN-LGD (60% 
vs. 14%, P < 0.001). BNC1 gene had significantly higher 
methylation frequency among IPMN-related advanced 
neoplasia compared to IPMN-LGD (66% vs. 3%, 
P < 0.001). CACNA1G genes were methylated in 0% of 
IPMN-LGDs and 25% of IPMN-related advanced neopla-
sia. Overall, DNA methylation frequency among IPMN-
advanced neoplasia was significantly higher than among 
IPMN-LGDs (80% vs. 27%, P < 0.001) (Fig. 1B).
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Diagnostic accuracy of DNA methylation‑based biomarker 
among IPMN tissue
We observed that the promoter hypermethylation of 
CACNA1G, ADAMTS1, and BNC1 genes had overall 
diagnostic accuracy, i.e., AUCs of 0.63 (0.50–0.74), 0.73 
(0.61–0.83), and 0.81 (0.070–0.90), respectively, in distin-
guishing IPMN-related advanced neoplasia from IPMN-
LGD (Fig.  2A; Table  2). As previously demonstrated, 
the aggregation of multiple genes into biomarker pan-
els improves predictive power [8, 9]. A combination of 
BNC1/CACNA1G genes achieved an AUC of 0.84 (0.74–
0.92. P < 0.001) (Fig.  2B, Table  2). IPMN lesion size as a 
continuous parameter, had an AUC of 0.66 (0.53–0.77) 
(Fig.  2C, Table  2). The conventional blood-based bio-
marker CA19-9 (≥ 37 U/mL) which is also a worrisome 
feature per Fukuoka guidelines had an AUC of 0.61 (0.50–
0.72) (Fig. 2C, Table 2). By using CA19-9 and IPMN size, 
an AUC of 0.75 was achieved (Fig. 2D, Table 2). A combi-
nation of cyst features lesion size, CA19-9, and methyla-
tion status of BNC1/CACNA1G genes demonstrated an 
AUC of 0.92 (0.86–0.98) (Fig. 2E, Table 2).

The diagnostic sensitivity and specificity of ADAMTS1 
gene were 60% and 86%, BNC1 gene were 66% and 97% 
and CACNA1G gene were 26% and 100%, respectively 

(Table 2, Fig. 2F). The combination of BNC1/CACNA1G 
genes achieved diagnostic sensitivity and specificity of 
71% and 97%, respectively. Lesion size had a diagnostic 
sensitivity of 65% and specificity of 69% whereas CA19-9 
had a sensitivity of 34% and specificity of 88%. The com-
bination of lesion size, CA19-9, and methylation status 
of BNC1/CACNA1G genes, had a sensitivity of 94% and 
specificity of 88%.

Discussion
Methylation-based biomarker strategies have emerged 
as important for early detection, including tests for stool 
DNA (SEPT9, Cologuard), liquid biopsies (EpiProColon), 
and urine-based strategies for renal tumors [10–12]. Our 
prior work demonstrated high accuracy in the detection 
of early-stage PCs (Stage 1 and II) in tissues as well as 
non-invasive liquid biopsies (sensitivity: 94.8% and speci-
ficity: 91.6%) [8, 9]. Hypermethylation of promoter CpG 
islands occurs early in pancreatic carcinogenesis and may 
cause silencing of tumor suppressor genes [7, 8, 13]. Pro-
moter hypermethylation of ADAMTS1 gene has a role 
in angiogenesis and cancer metastasis [14]. BNC1 and 
CACNA1G genes regulate epithelial plasticity and cellu-
lar proliferation, respectively [15, 16].

Table 1  Baseline study population demographics

IQR Interquartile Range, CA19-9 Carbohydrate antigen 19-9
# Lesion size data unavailable for 6 patients, –: insufficient values

Demographics Total IPMN advanced neoplasia IPMN-LGD p-value
n = 70 n = 35 n = 35

Sex distribution: n (%)

Female 34 (48.7%) 18 (51.4%) 16 (45.7%) 0.6

Racial distribution: n (%)

White 65 (92.9%) 31 (88.6%) 34 (97.1%)

Black 1 (1.4%) 0 1 (2.9%) –

Others 1 (1.4%) 1 (2.9%) 0

Unknown 3 (4.3%) 3 (8.6) 0

Smoking history: n (%)

Current 11 (15.7%) 7 (20%) 4 (11.4%) 0.5

Past 19 (27.1%) 10 (28.8%) 9 (25.7%)

Never 40 (57.2%) 18 (51.4%) 22 (62.9%)

Age at diagnosis

Median (IQR) 71.5 (65.2–75) 72.5 (67.0–76.5) 70.0 (62.0–74.0) 0.8

Surgical resection: n (%)

Distal pancreatectomy 11 (15.4%) 5 (14.3%) 6 (17.1%)

Pancreaticoduodenectomy 54 (77.6%) 26 (74.3%) 28 (80.0%)

Total pancreatectomy 2 (2.8%) 2 (5.7%) 0 –

Enucleation 1 (1.4%) 0 1 (2.9%)

Unknown 2 (2.8%) 2 (5.7%) 0

CA19-9 positive (≥ 37 U/mL): n (%) 13 (18.6%) 11 (31.4%) 2 (5.7%) < 0.01

IPMN lesion size (median, IQR)# 3.0 (1.8–3.7) 3.3 (2.5–4.3) 2.5 (1.5–3.0) < 0.01
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At a tissue level, i.e., resected specimens, cyst fluid, 
and pancreatic juice, methylation-based markers have 
previously been investigated for IPMN stratification 
[17–24]. Some of the studies utilized methylation sta-
tus of tumor suppressor genes (WWOX, SMAD4, 
and CDO1 genes) [17, 23] or markers related to muci-
nous lineage (such as GNAS, MUC family) [19, 24]. 
Similar to our study, the investigators used a multi-
gene approach to enhance diagnostic accuracy [20, 
22]. However, advanced neoplasia was often compared 
to heterogeneous controls, including cysts with low/
no malignant potential (pseudocysts, serous cystad-
enomas) or normal pancreatic tissue admixed with 
IPMN-LGD. The inclusion of normal tissue and non-
precancerous lesions in control might have decreased 
the threshold of diagnostic performance and spurious 
elevation of AUCs [20, 22]. Utilization of only IPMN-
LGD as controls caters to a more specific question of 
malignant stratification of IPMNs. In clinical practice, 
delineation of IPMNs from lesions such as serous cys-
tadenoma and pancreatic pseudocysts can be achieved 

through cyst morphology and aspirate cytology [25, 
26].

Cyst morphology-based stratification described in vari-
ous consensus guidelines (such as Fukuoka, American 
Gastroenterology Association, and European guidelines) 
defined high-risk morphologic features such as high-risk 
stigmata, and worrisome features have less than perfect 
accuracy [5, 27]. Therefore, clinical decisions based solely 
on these guidelines risk unnecessary surgical resections 
as well as inadvertent interval malignant progression. 
Even in the current study, 35 IPMN-LGDs underwent 
surgical resection based on high-risk morphological fea-
tures but were later observed to have benign histology. 
Combination of BNC1/CACNA1G genes had favorable 
diagnostic accuracy (AUC of 0.84, sensitivity of 71%, and 
specificity of 97%), which further improved when com-
bined with IPMN lesion size (continuous variable) and 
CA19-9 (AUC: 0.92: sensitivity of 94%, and specificity of 
88%). Thus, we endorse utilization of DNA methylation-
based biomarkers in supplementing IPMN management 
decisions.

Our study investigates a scientifically important ques-
tion of the malignant progression of IPMN, which is also 
clinically relevant. Each IPMN tissue in this study under-
went laser microdissection at a high-volume multidis-
ciplinary pancreatic cancer center and was thoroughly 
reviewed to ascertain mucinous lineage. Using methyla-
tion-specific PCR also ensures good analytical sensitivity 
and much higher specificity. However, the current study 
relied on histologically characterized tissue samples, 
making the test invasive. Furthermore, the study popula-
tion was predominantly Caucasian and warrants further 
study in diverse population samples. IPMN cell lines, 
some of which have been described in the literature, were 
not readily available to us [28]. Thus, lack of cancer cell 
lines with mucinous lineage, which formed the basis of 
our biomarker discovery, adds to the limitations of this 
study.

Conclusions
We demonstrated that highly specific methylation mark-
ers in BNC1/CACNA1G genes  can be utilized to dif-
ferentiate IPMN with advanced neoplasia from LGD 
lesions. Further multiplexing with specific methylation 
targets can further enhance the diagnostic sensitivity of 
the biomarker panel and pave the way for high-fidelity 
noninvasive biomarkers for IPMN stratification through 
blood-based, urine-based, or pancreatic cyst fluid assays.

Methods
Patients and specimens
This study received ethics approval from Institutional 
Review Board (IRB#2000022652) at Yale University. 

Fig. 1  Methylation frequency of hyper methylated genes in IPMN 
and/or advanced neoplasia: A heat map of individual genes among 
IPMN-LGD versus IPMN-advanced neoplasia (red—methylated, 
green—unmethylated) in respective patient. B Methylation 
frequency among various genes in IPMN tissue samples
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Samples were selected from a prospectively maintained 
database of IPMN patients. The IPMN patients under-
went surgical resection based on clinical consensus 
guidelines in a high-volume multidisciplinary clinic 
[29]. The patients with Fukuoka-positive IPMN who 
underwent surgical resection were consented and their 

baseline demographic and histologic characteristics were 
recorded. The samples of IPMN with LGD versus IPMN 
with HGD/PC (n = 35 each) samples were matched 1:1 
based on age, sex, smoking, and race (Table 1). The surgi-
cally removed IPMN tissue samples were graded by two 
expert pathologists (LW or CID) using a newly developed 

A

B

C

D

E

F

Fig. 2  Receiver operator curve (ROC) analysis investigating the predictive capacity of: A Promoter hypermethylation of ADAMTS1, BNC1, and 
CACNA1G genes. B Combination of ADAMTS1/BNC1/CACNA1G and BNC1/CACNA1G genes. (C) IPMN lesion size and CA19-9 levels. D Combination of 
IPMN lesion size (continuous variable) and CA19-9. E Combination of promoter hypermethylation of BNC1/CACNA1G genes, IPMN size, and CA19-9 
in the prediction of advanced neoplasia. F Diagnostic sensitivity and specificity of methylation status of individual genes, CA19-9, cyst features, and 
their combination

Table 2  Diagnostic accuracy of various methylation biomarker panel

CA19-9 Carbohydrate antigen 19-9
# Continuous variable

Biomarker Area under the curve P-value Sensitivity (%) Specificity (%)

ADAMTS1 0.73 (0.61–0.83) 0.001 60 86

BNC1 0.81 (0.70–0.90)  < 0.001 66 97

CACNA1G 0.63 (0.50–0.74) 0.06 26 100

ADAMTS1/BNC1 0.80 (0.69–0.89)  < 0.001 77 83

ADAMTS1/BNC1/CACNA1G 0.81 (0.70–0.90)  < 0.001 83 80

BNC1/CACNA1G 0.84 (0.74–0.92)  < 0.001 71 97

IPMN Lesion Size# 0.66 (0.53–0.77) 0.01 65 69

IPMN Lesion Size# and CA19-9 0.75(0.65–0.86) 0.03 66 82

CA19-9 0.61 (0.50–0.72) 0.06 34 88

IPMN Lesion Size#, CA19-9, & CACNA1G/
BNC1

0.92 (0.86–0.98)  < 0.001 94 88
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classification system for pancreatic neoplastic precursor 
lesions [30].

Identification of methylation‑specific novel biomarkers
We previously described the pharmaco-epigenomic iden-
tification of the ADAMTS1/BNC1/CACN1G genes and 
evaluated the diagnostic accuracy of this biomarker panel 
in detecting PC in both tissues and liquid samples. In 
brief, novel methylation-regulated genes were identified 
through the treatment of pancreatic cancer cell lines with 
DNA methyltransferase inhibitor: 5-aza-2′-deoxycytidine 
(DAC) and histone deacetylase inhibitor Trichosta-
tin A (TSA). Gene expression was analyzed through 
transcriptome-wide Agilent 44  K Expression Array, and 
the genes which re-expressed with DAC but not TSA 
were then filtered to identify pancreatic cancer-specific 
genes and then confirmed in The Cancer Genome Atlas 
data (Additional file  1: Figure S1). We further show the 
methylation status of all three genes ADMATS1, BNC1, 
and CACNA1G in the TCGA dataset of pancreas cancer 
(Additional file  1: Figure S2) [8, 9]. The purpose of this 
study is to determine the use of a biomarker panel based 
on abnormal hypermethylation of the ADAMTS1, BNC1, 
and CACNA1G genes in the malignant classification of 
histologically defined IPMN tissue [8, 9, 31].

Tissue DNA extraction and methylation analysis
Formalin-fixed paraffin-embedded tissue samples were 
evaluated using conventional MS-PCR, as described 
previously [32]. This project spanned over a decade and 
initially involved conventional MS-PCR for CACNA1G. 
To evaluate the methylation status of the ADAMTS1 
and BNC1 genes, we used TaqMan probe-based PCR 
amplification (IDT Inc.) on bisulfite-converted DNA 
isolated from IPMN tissue using quantitative MS-PCR, 
as described in our previous publications [8, 9]. Both 
conventional MS-PCR (CACNA1G) and quantitative 
MS-PCR (ADAMTS1/BNC1) were used to determine 
promoter hypermethylation among tissue samples. For 
quantification, the comparative cycle threshold (Ct) 
method was used, normalizing the Ct values for the can-
didate gene to the Ct values of unmethylated reaction 
relative to a methylated reaction sample. CpG methylated 
Jurkat genomic DNA (Thermofisher Scientific) was used 
as methylation positive control (Life Technologies) and 
β-actin as a housekeeping gene for normalization. Nega-
tive controls included non-template water samples. All 
studies followed the standards for the minimum informa-
tion required for the publication of quantitative real-time 
PCR experiments.

Statistical analysis
The continuous variables were described using medians 
and interquartile ranges, and categorical variables were 
described with frequencies. Mann–Whitney U and χ2 
test were used to analyze the nonparametric continu-
ous and categorical variables, respectively. The Receiver 
Operator Characteristic Curve (ROC) analysis (nonpar-
ametric model) was used to determine the diagnostic 
accuracy of each gene or their combination in pre-
dicting the presence of advanced neoplasia. The com-
bination of lesional size, CA19-9, and results of DNA 
methylation markers were combined using logistic 
regression model. These models then underwent ROC 
analyses to determine discriminant capacity. STATA 
Version 17.0 was used for all statistical analysis (Stata-
Corp LLC, College Station, Texas). The significant asso-
ciations were then included in multivariate regression. 
A P-value of less than 0.05 was considered significant.
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